HDFS 上每个文件都要在 NameNode 上创建对应的元数据,这个元数据的大小约为 150byte,这样当小文件比较多的时候,就会产生很多的元数据文件,一方面会大量占用 NameNode 的内存空间,另一方面就是元数据文件过多,使的寻址索引速度变慢。
小文件过多,在进行 MR 计算时,会生成过多切片,需要启动过多的 MapTask。每个 MapTask 处理的数据量小,导致 MapTask 的处理时间比启动时间还小,白白消耗资源。
[fickler@hadoop102 ~]$ hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar wordcount /input /output2
(2)观察控制台
2021-02-14 16:13:50,607 INFO mapreduce.Job: Job job_1613281510851_0002
running in uber mode : false
(3)观察 http://hadoop103:8088/cluster
(4)开启 uber 模式,在 mapred-site.xml
中添加如下配置
<property>
<name>mapreduce.job.ubertask.enablename>
<value>truevalue>
property>
<property>
<name>mapreduce.job.ubertask.maxmapsname>
<value>9value>
property>
<property>
<name>mapreduce.job.ubertask.maxreducesname>
<value>1value>
property>
<property>
<name>mapreduce.job.ubertask.maxbytesname>
<value>value>
property>
(5)分发配置
[fickler@hadoop102 ~]$ xsync mapred-site.xml
(6)再次执行 wordcount 程序
[fickler@hadoop102 ~]$ hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar wordcount /input /output2
(7)观察控制台
2021-02-14 16:28:36,198 INFO mapreduce.Job: Job
job_1613281510851_0003 running in uber mode : true
(8)观察 http://hadoop103:8088/cluster
使用 Sort 程序评测 MapReduce
注:一个虚拟机不超过 150G 磁盘尽量不要执行这段代码
(1)使用 RandomWriter 来生产随机数,每个节点运行 10 个 Map 任务,每个 Map 产生大约 1G 大小的二进制随机数
[fickler@hadoop102 ~]$ hadoop jar /opt/module/hadoop-3.1.3/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar randomwriter random-data
(2)执行 Sort 程序
[fickler@hadoop102 ~]$ hadoop jar /opt/module/hadoop-3.1.3/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar sort random-data sorted-data
(3)验证数据是否真正排好序了
[fickler@hadoop102 ~]$ doop jar /opt/module/hadoop-3.1.3/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-3.1.3-tests.jar testmapredsort -sortInput random-data -sortOutput sorted-data
(1)需求:从 1G 数据中,统计每个单词出现次数。服务器 3 台,每台配置 4G 内存,4 核 CPU,4 线程。
(2)需求分析:
1G / 128m = 8 个 MapTask;1 个 ReduceTask;1 个 mrAppMaster
平均每个节点运行 10 个 / 3 台 ≈ 3 个任务(4 3 3)
(1)修改:hadoop-env.sh
export HDFS_NAMENODE_OPTS="-Dhadoop.security.logger=INFO,RFAS -Xmx1024m"
export HDFS_DATANODE_OPTS="-Dhadoop.security.logger=ERROR,RFAS -Xmx1024m"
(2)修改 hdfs-site.xml
<property>
<name>dfs.namenode.handler.countname>
<value>21value>
property>
(3)修改 core-site.xml
<property>
<name>fs.trash.intervalname>
<value>60value>
property>
(4)分发配置
[fickler@hadoop102 ~]$ xsync hadoop-env.sh hdfs-site.xml core-site.xml
(1)修改 mapred-site.xml
<property>
<name>mapreduce.task.io.sort.mbname>
<value>100value>
property>
<property>
<name>mapreduce.map.sort.spill.percentname>
<value>0.80value>
property>
<property>
<name>mapreduce.task.io.sort.factorname>
<value>10value>
property>
<property>
<name>mapreduce.map.memory.mbname>
<value>-1value>
<description>The amount of memory to request from the scheduler for each map task. If this is not specified or is non-positive, it is inferred from mapreduce.map.java.opts and mapreduce.job.heap.memory-mb.ratio. If java-opts are also not specified, we set it to 1024.description>
property>
<property>
<name>mapreduce.map.cpu.vcoresname>
<value>1value>
property>
<property>
<name>mapreduce.map.maxattemptsname>
<value>4value>
property>
<property>
<name>mapreduce.reduce.shuffle.parallelcopiesname>
<value>5value>
property>
<property>
<name>mapreduce.reduce.shuffle.input.buffer.percentname>
<value>0.70value>
property>
<property>
<name>mapreduce.reduce.shuffle.merge.percentname>
<value>0.66value>
property>
<property>
<name>mapreduce.reduce.memory.mbname>
<value>-1value>
<description>The amount of memory to request from the scheduler for each reduce task. If this is not specified or is non-positive, it is inferred from mapreduce.reduce.java.opts and mapreduce.job.heap.memory-mb.ratio. If java-opts are also not specified, we set it to 1024.description>
property>
<property>
<name>mapreduce.reduce.cpu.vcoresname>
<value>2value>
property>
<property>
<name>mapreduce.reduce.maxattemptsname>
<value>4value>
property>
<property>
<name>mapreduce.job.reduce.slowstart.completedmapsname>
<value>0.05value>
property>
<property>
<name>mapreduce.task.timeoutname>
<value>600000value>
property>
(2)分发配置
[fickler@hadoop102 ~]$ xsync mapred-site.xml
(1)修改 yarn-site,xml
配置参数如下
<property>
<description>The class to use as the resource scheduler.description>
<name>yarn.resourcemanager.scheduler.classname>
<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacitySchedulervalue>
property>
<property>
<description>Number of threads to handle scheduler interface.description>
<name>yarn.resourcemanager.scheduler.client.thread-countname>
<value>8value>
property>
<property>
<description>Enable auto-detection of node capabilities such asmemory and CPU.description>
<name>yarn.nodemanager.resource.detect-hardware-capabilitiesname>
<value>falsevalue>
property>
<property>
<description>Flag to determine if logical processors(such as hyperthreads) should be counted as cores. Only applicable on Linux when yarn.nodemanager.resource.cpu-vcores is set to -1 and yarn.nodemanager.resource.detect-hardware-capabilities is true.description>
<name>yarn.nodemanager.resource.count-logical-processors-as-coresname>
<value>falsevalue>
property>
<property>
<description>Multiplier to determine how to convert phyiscal cores tovcores. This value is used if yarn.nodemanager.resource.cpu-vcoresis set to -1(which implies auto-calculate vcores) andyarn.nodemanager.resource.detect-hardware-capabilities is set to true. The number of vcores will be calculated as number of CPUs * multiplier.description>
<name>yarn.nodemanager.resource.pcores-vcores-multipliername>
<value>1.0value>
property>
<property>
<description>Amount of physical memory, in MB, that can be allocated for containers. If set to -1 and yarn.nodemanager.resource.detect-hardware-capabilities is true, it isautomatically calculated(in case of Windows and Linux).In other cases, the default is 8192MB.description>
<name>yarn.nodemanager.resource.memory-mbname>
<value>4096value>
property>
<property>
<description>Number of vcores that can be allocatedfor containers. This is used by the RM scheduler when allocatingresources for containers. This is not used to limit the number of CPUs used by YARN containers. If it is set to -1 and yarn.nodemanager.resource.detect-hardware-capabilities is true, it is automatically determined from the hardware in case of Windows and Linux. In other cases, number of vcores is 8 by default.description>
<name>yarn.nodemanager.resource.cpu-vcoresname>
<value>4value>
property>
<property>
<description>The minimum allocation for every container request at the RM in MBs. Memory requests lower than this will be set to the value of this property. Additionally, a node manager that is configured to have less memory than this value will be shut down by the resource manager.description>
<name>yarn.scheduler.minimum-allocation-mbname>
<value>1024value>
property>
<property>
<description>The maximum allocation for every container request at the RM in MBs. Memory requests higher than this will throw an InvalidResourceRequestException.description>
<name>yarn.scheduler.maximum-allocation-mbname>
<value>2048value>
property>
<property>
<description>The minimum allocation for every container request at the RM in terms of virtual CPU cores. Requests lower than this will be set to the value of this property. Additionally, a node manager that is configured to have fewer virtual cores than this value will be shut down by the resource manager.description>
<name>yarn.scheduler.minimum-allocation-vcoresname>
<value>1value>
property>
<property>
<description>The maximum allocation for every container request at the RM in terms of virtual CPU cores. Requests higher than this will throw an InvalidResourceRequestException.description>
<name>yarn.scheduler.maximum-allocation-vcoresname>
<value>2value>
property>
<property>
<description>Whether virtual memory limits will be enforced forcontainers.description>
<name>yarn.nodemanager.vmem-check-enabledname>
<value>falsevalue>
property>
<property>
<description>Ratio between virtual memory to physical memory when setting memory limits for containers. Container allocations are expressed in terms of physical memory, and virtual memory usage is allowed to exceed this allocation by this ratio.description>
<name>yarn.nodemanager.vmem-pmem-rationame>
<value>2.1value>
property>
(2)分发配置
[fickler@hadoop102 ~]$ xsync yarn-site.xml
(1)重启集群
[fickler@hadoop102 ~]$ sbin/stop-yarn.sh
[fickler@hadoop102 ~]$ sbin/start-yarn.sh
(2)执行 WordCount 程序
[fickler@hadoop102 ~]$ hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar wordcount /input /output
(3)观察 Yarn 任务执行页面
http://hadoop103:8088/cluster/apps