题目
作者
期刊会议
年份
为了解决非欧几里得结构 ,利用图论、谱变换、嵌入流形等重新构造非欧几里得卷积运,算新提出的几何网络神经网络很难在不同的拓扑中进行推广,而且,如何构造基于pde的损失函数和为物理约束学习设置边界条件也不清楚
主要contribution:
F ( u , ∇ u , ∇ 2 u , ⋯ ; μ ) = 0 , in Ω p B ( u , ∇ u , ∇ 2 u , ⋯ ; μ ) = 0 , on ∂ Ω p \begin{array}{c} \mathcal{F}\left(\mathbf{u}, \nabla \mathbf{u}, \nabla^{2} \mathbf{u}, \cdots ; \boldsymbol{\mu}\right)=0, \quad \text { in } \Omega_{p} \\ \mathcal{B}\left(\mathbf{u}, \nabla \mathbf{u}, \nabla^{2} \mathbf{u}, \cdots ; \boldsymbol{\mu}\right)=0, \text { on } \partial \Omega_{p} \end{array} F(u,∇u,∇2u,⋯;μ)=0, in ΩpB(u,∇u,∇2u,⋯;μ)=0, on ∂Ωp(1)
离散解可以通过CNN model估计
u ( χ , μ ( χ ) ) ≈ u c n n ( χ , μ ( χ ) ; Γ ) \mathbf{u}(\chi, \boldsymbol{\mu}(\boldsymbol{\chi})) \approx \mathbf{u}^{c n n}(\boldsymbol{\chi}, \boldsymbol{\mu}(\boldsymbol{\chi}) ; \Gamma) u(χ,μ(χ))≈ucnn(χ,μ(χ);Γ) (2)
χ = { x 1 , ⋯ , x n g } \chi=\left\{\mathbf{x}_{1}, \cdots, \mathbf{x}_{n_{g}}\right\} χ={x1,⋯,xng}表示 n g n_{g} ng个固定网格点均匀空间的几何(像像素/体素的图片), Γ = { γ l } l = 1 n l \Gamma=\left\{\gamma^{l}\right\}_{l=1}^{n_{l}} Γ={γl}l=1nl组可训练的滤波器,用于卷积操作,输入离散空间轴 χ \chi χ以及参数fields μ ( χ ) \mu(\chi) μ(χ),为了获得输出解,通过应用 Γ \Gamma Γ以及非线性算子(如激活函数)作用于输入
g l ( x ) = ϕ ( ( g l ⊙ γ l ) ( x ) ) , x ∈ χ l g^{l}(\mathbf{x})=\phi\left(\left(g^{l} \odot \gamma^{l}\right)(\mathbf{x})\right), \mathbf{x} \in \chi^{l} gl(x)=ϕ((gl⊙γl)(x)),x∈χl
其中, ⊙ \odot ⊙表示卷积算子
( g ⊙ γ ) ( x ) = ∫ χ g ( x − x ′ ) γ ( x ′ ) d x ′ (g \odot \gamma)(\mathbf{x})=\int_{\chi} g\left(\mathbf{x}-\mathbf{x}^{\prime}\right) \gamma\left(\mathbf{x}^{\prime}\right) d \mathbf{x}^{\prime} (g⊙γ)(x)=∫χg(x−x′)γ(x′)dx′
在训练集 { μ i , u i d } i = 1 n d \left\{\boldsymbol{\mu}_{i}, \mathbf{u}_{i}^{d}\right\}_{i=1}^{n_{d}} {μi,uid}i=1nd上训练的损失函数定义为
min Γ ∑ i = 1 n d ∥ u c n n ( χ , μ i ; Γ ) − u i d ( χ ) ∥ Ω p ⏟ data-based loss: L d a t a \min _{\Gamma} \sum_{i=1}^{n_{d}} \underbrace{\left\|\mathbf{u}^{c n n}\left(\boldsymbol{\chi}, \boldsymbol{\mu}_{i} ; \Gamma\right)-\mathbf{u}_{i}^{d}(\boldsymbol{\chi})\right\|_{\Omega_{p}}}_{\text {data-based loss: } \mathcal{L}_{d a t a}} minΓ∑i=1nddata-based loss: Ldata ∥ ∥ucnn(χ,μi;Γ)−uid(χ)∥ ∥Ωp
其中, ∥ ⋅ ∥ Ω \|\cdot\|_{\Omega} ∥⋅∥Ω表示在空间域 Ω p \Omega_{p} Ωp上的 L 2 L_{2} L2 norm,这样的方法需要数值模拟或者实验获得数据,太过expensive,考虑使用下列的损失
min Γ ∑ i = 1 n d ∥ F ( u c n n ( χ , μ i ; Γ ) , ∇ u c n n ( χ , μ i ; Γ ) , ∇ 2 u c n n ( χ , μ i ; Γ ) , ⋯ ; μ i ) ∥ Ω p ⏟ equation-based loss: L p d e s.t. B ( u c n n ( χ , μ i ; Γ ) , ∇ u c n n ( χ , μ i ; Γ ) , ∇ 2 u c n n ( χ , μ i ; Γ ) , ⋯ ; μ i ) = 0 , on ∂ Ω p \begin{array}{l} \min _{\Gamma} \sum_{i=1}^{n_{d}} \underbrace{\left\|\mathcal{F}\left(\mathbf{u}^{c n n}\left(\boldsymbol{\chi}, \boldsymbol{\mu}_{i} ; \Gamma\right), \nabla \mathbf{u}^{c n n}\left(\boldsymbol{\chi}, \boldsymbol{\mu}_{i} ; \Gamma\right), \nabla^{2} \mathbf{u}^{c n n}\left(\boldsymbol{\chi}, \boldsymbol{\mu}_{i} ; \Gamma\right), \cdots ; \boldsymbol{\mu}_{i}\right)\right\|_{\Omega_{p}}}_{\text {equation-based loss: } \mathcal{L}_{p d e}} \\ \text {s.t. } \mathcal{B}\left(\mathbf{u}^{c n n}\left(\boldsymbol{\chi}, \boldsymbol{\mu}_{i} ; \Gamma\right), \nabla \mathbf{u}^{c n n}\left(\boldsymbol{\chi}, \boldsymbol{\mu}_{i} ; \Gamma\right), \nabla^{2} \mathbf{u}^{c n n}\left(\boldsymbol{\chi}, \boldsymbol{\mu}_{i} ; \Gamma\right), \cdots ; \boldsymbol{\mu}_{i}\right)=0, \text { on } \partial \Omega_{p} \end{array} minΓ∑i=1ndequation-based loss: Lpde ∥ ∥F(ucnn(χ,μi;Γ),∇ucnn(χ,μi;Γ),∇2ucnn(χ,μi;Γ),⋯;μi)∥ ∥Ωps.t. B(ucnn(χ,μi;Γ),∇ucnn(χ,μi;Γ),∇2ucnn(χ,μi;Γ),⋯;μi)=0, on ∂Ωp(6)
在这篇文章中仅仅关注不使用labeled data
Limitation:
该方法核心思想是利用坐标变换技术将求解场从不规则物理域映射到矩形参考域。
x = G ( ξ ) , ξ = G − 1 ( x ) \mathbf{x}=\mathcal{G}(\boldsymbol{\xi}), \quad \boldsymbol{\xi}=\mathcal{G}^{-1}(\mathbf{x}) x=G(ξ),ξ=G−1(x)
其中 G : Ω r ↦ Ω p \mathcal{G}: \Omega_{r} \mapsto \Omega_{p} G:Ωr↦Ωpforward mapping, Ω p ↦ Ω r \Omega_{p} \mapsto \Omega_{r} Ωp↦Ωr为inverse mapping,给定坐标变换函数( 9 / 9 − 1 9 / 9^{-1} 9/9−1),可以唯一地确 定从参考域到物理域的确定的一对一映射,并且变换映射的Jabobians也可用来重新表示参考域上的偏微分方 程。
ξ ( x ) = ξ b for ∀ x ∈ ∂ Ω p i , i = 1 , ⋯ , 4 x ( ξ ) = x b for ∀ ξ ∈ ∂ Ω r i , i = 1 , ⋯ , 4 \begin{array}{l} \boldsymbol{\xi}(\mathbf{x})=\boldsymbol{\xi}_{b} \text { for } \forall \mathbf{x} \in \partial \Omega_{p}^{i}, i=1, \cdots, 4 \\ \mathbf{x}(\boldsymbol{\xi})=\mathbf{x}_{b} \text { for } \forall \boldsymbol{\xi} \in \partial \Omega_{r}^{i}, i=1, \cdots, 4 \end{array} ξ(x)=ξb for ∀x∈∂Ωpi,i=1,⋯,4x(ξ)=xb for ∀ξ∈∂Ωri,i=1,⋯,4(8,a,b)
∇ 2 ξ ( x ) = 0 \nabla^{2} \boldsymbol{\xi}(\mathbf{x})=0 ∇2ξ(x)=0 (9)
带有eq(8,a)的边界,通过交换Eq(9)中的自变量和因变量,可以得到以下物理坐标 x x x下的扩散方程:
α ∂ 2 x ∂ ξ 2 − 2 β ∂ 2 x ∂ ξ ∂ β + γ ∂ 2 x ∂ η 2 = 0 α ∂ 2 y ∂ ξ 2 − 2 β ∂ 2 y ∂ ξ ∂ β + γ ∂ 2 y ∂ η 2 = 0 \begin{aligned} \alpha \frac{\partial^{2} x}{\partial \xi^{2}}-2 \beta \frac{\partial^{2} x}{\partial \xi \partial \beta}+\gamma \frac{\partial^{2} x}{\partial \eta^{2}} &=0 \\ \alpha \frac{\partial^{2} y}{\partial \xi^{2}}-2 \beta \frac{\partial^{2} y}{\partial \xi \partial \beta}+\gamma \frac{\partial^{2} y}{\partial \eta^{2}} &=0 \end{aligned} α∂ξ2∂2x−2β∂ξ∂β∂2x+γ∂η2∂2xα∂ξ2∂2y−2β∂ξ∂β∂2y+γ∂η2∂2y=0=0(10)
其中, α , β , and γ \alpha, \beta, \text { and } \gamma α,β, and γ
α = ( ∂ x ∂ η ) 2 + ( ∂ y ∂ η ) 2 γ = ( ∂ x ∂ ξ ) 2 + ( ∂ y ∂ ξ ) 2 β = ∂ x ∂ ξ ∂ x ∂ η + ∂ y ∂ ξ ∂ y ∂ η \begin{aligned} \alpha &=\left(\frac{\partial x}{\partial \eta}\right)^{2}+\left(\frac{\partial y}{\partial \eta}\right)^{2} \\ \gamma &=\left(\frac{\partial x}{\partial \xi}\right)^{2}+\left(\frac{\partial y}{\partial \xi}\right)^{2} \\ \beta &=\frac{\partial x}{\partial \xi} \frac{\partial x}{\partial \eta}+\frac{\partial y}{\partial \xi} \frac{\partial y}{\partial \eta} \end{aligned} αγβ=(∂η∂x)2+(∂η∂y)2=(∂ξ∂x)2+(∂ξ∂y)2=∂ξ∂x∂η∂x+∂ξ∂y∂η∂y
通过解带有边界(8)的eq(10),forward map的离散值就能获得.
在physics domain的微分方程要变成reference domain, **Jacobians of the transformation map ** 9 9 9, 使得在physics domain的一阶导数转化为reference domain
∂ ∂ x = ( ∂ ∂ ξ ) ( ∂ ξ ∂ x ) + ( ∂ ∂ η ) ( ∂ η ∂ x ) ∂ ∂ y = ( ∂ ∂ ξ ) ( ∂ ξ ∂ y ) + ( ∂ ∂ η ) ( ∂ η ∂ y ) \begin{aligned} \frac{\partial}{\partial x} &=\left(\frac{\partial}{\partial \xi}\right)\left(\frac{\partial \xi}{\partial x}\right)+\left(\frac{\partial}{\partial \eta}\right)\left(\frac{\partial \eta}{\partial x}\right) \\ \frac{\partial}{\partial y} &=\left(\frac{\partial}{\partial \xi}\right)\left(\frac{\partial \xi}{\partial y}\right)+\left(\frac{\partial}{\partial \eta}\right)\left(\frac{\partial \eta}{\partial y}\right) \end{aligned} ∂x∂∂y∂=(∂ξ∂)(∂x∂ξ)+(∂η∂)(∂x∂η)=(∂ξ∂)(∂y∂ξ)+(∂η∂)(∂y∂η) (12)
通常,有限差分用于数值计算雅可比矩阵,必须在参考域中执行,修改eq12为
∂ ∂ x = 1 J ⏟ constant [ ( ∂ ∂ ξ ) ( ∂ y ∂ η ) ⏟ constant − ( ∂ ∂ η ) ( ∂ y ∂ ξ ) ⏟ constant ] \frac{\partial}{\partial x}=\underbrace{\frac{1}{J}}_{\text {constant }}[\left(\frac{\partial}{\partial \xi}\right) \underbrace{\left(\frac{\partial y}{\partial \eta}\right)}_{\text {constant }}-\left(\frac{\partial}{\partial \eta}\right) \underbrace{\left(\frac{\partial y}{\partial \xi}\right)}_{\text {constant }}] ∂x∂=constant J1[(∂ξ∂)constant (∂η∂y)−(∂η∂)constant (∂ξ∂y)]
∂ ∂ y = 1 J ⏟ constant [ ( ∂ ∂ η ) ( ∂ x ∂ ξ ) ⏟ constant − ( ∂ ∂ ξ ) ( ∂ x ∂ η ) ⏟ constant ] \frac{\partial}{\partial y}=\underbrace{\frac{1}{J}}_{\text {constant }}[\left(\frac{\partial}{\partial \eta}\right) \underbrace{\left(\frac{\partial x}{\partial \xi}\right)}_{\text {constant }}-\left(\frac{\partial}{\partial \xi}\right) \underbrace{\left(\frac{\partial x}{\partial \eta}\right)}_{\text {constant }}] ∂y∂=constant J1[(∂η∂)constant (∂ξ∂x)−(∂ξ∂)constant (∂η∂x)]
其中 J = ∂ x ∂ ξ ∂ y ∂ η − ∂ x ∂ η ∂ y ∂ ξ ≠ 0 J=\frac{\partial x}{\partial \xi} \frac{\partial y}{\partial \eta}-\frac{\partial x}{\partial \eta} \frac{\partial y}{\partial \xi} \neq 0 J=∂ξ∂x∂η∂y−∂η∂x∂ξ∂y=0是Jacobian matrix 的行列式, ∂ y ∂ η , ∂ y ∂ ξ \frac{\partial y}{\partial \eta}, \frac{\partial y}{\partial \xi} ∂η∂y,∂ξ∂y, ∂ x ∂ η , and ∂ x ∂ ξ \frac{\partial x}{\partial \eta}, \text { and } \frac{\partial x}{\partial \xi} ∂η∂x, and ∂ξ∂x能预先计算,如果forward map确定就保持常数, ∂ ∂ η and ∂ ∂ ξ \frac{\partial}{\partial \eta} \text { and } \frac{\partial}{\partial \xi} ∂η∂ and ∂ξ∂在reference domain
在参考域的优化目标, 损失函数为
min Γ ∑ i = 1 n d ∥ F ~ ( u c n n ( Ξ , μ i ; Γ ) , ∇ u c n n ( Ξ , μ i ; Γ ) , ∇ 2 u c n n ( Ξ , μ i ; Γ ) , ⋯ ; μ i ) ∥ Ω r ⏟ equation-based loss on reference domain: L ~ p d e s.t. B ~ ( u c n n ( Ξ , μ i ; Γ ) , ∇ u c n n ( Ξ , μ i ; Γ ) , ∇ 2 u c n n ( Ξ , μ i ; Γ ) , ⋯ ; μ i ) = 0 , on ∂ Ω r \begin{array}{l} \min _{\Gamma} \sum_{i=1}^{n_{d}} \underbrace{\left\|\tilde{\mathcal{F}}\left(\mathbf{u}^{c n n}\left(\boldsymbol{\Xi}, \boldsymbol{\mu}_{i} ; \Gamma\right), \nabla \mathbf{u}^{c n n}\left(\boldsymbol{\Xi}, \boldsymbol{\mu}_{i} ; \Gamma\right), \nabla^{2} \mathbf{u}^{c n n}\left(\boldsymbol{\Xi}, \boldsymbol{\mu}_{i} ; \Gamma\right), \cdots ; \boldsymbol{\mu}_{i}\right)\right\|_{\Omega_{r}}}_{\text {equation-based loss on reference domain: } \tilde{\mathcal{L}}_{p d e}} \\ \text {s.t. } \tilde{\mathcal{B}}\left(\mathbf{u}^{c n n}\left(\boldsymbol{\Xi}, \boldsymbol{\mu}_{i} ; \Gamma\right), \nabla \mathbf{u}^{c n n}\left(\boldsymbol{\Xi}, \boldsymbol{\mu}_{i} ; \Gamma\right), \nabla^{2} \mathbf{u}^{c n n}\left(\boldsymbol{\Xi}, \boldsymbol{\mu}_{i} ; \Gamma\right), \cdots ; \boldsymbol{\mu}_{i}\right)=0, \text { on } \partial \Omega_{r} \end{array} minΓ∑i=1ndequation-based loss on reference domain: L~pde ∥ ∥F~(ucnn(Ξ,μi;Γ),∇ucnn(Ξ,μi;Γ),∇2ucnn(Ξ,μi;Γ),⋯;μi)∥ ∥Ωrs.t. B~(ucnn(Ξ,μi;Γ),∇ucnn(Ξ,μi;Γ),∇2ucnn(Ξ,μi;Γ),⋯;μi)=0, on ∂Ωr
∇ ⋅ ( ∇ T ( x ) ) = 0 , x ∈ Ω p T ( x ) = T b c ( x ) , x ∈ ∂ Ω p \begin{array}{l} \nabla \cdot(\nabla T(\mathbf{x}))=0, \mathbf{x} \in \Omega_{p} \\ T(\mathbf{x})=T_{b c}(\mathbf{x}), \mathbf{x} \in \partial \Omega_{p} \end{array} ∇⋅(∇T(x))=0,x∈ΩpT(x)=Tbc(x),x∈∂Ωp