力扣题目链接
斐波那契数 (通常用 F(n)
表示)形成的序列称为 斐波那契数列 。该数列由 0
和 1
开始,后面的每一项数字都是前面两项数字的和。也就是:
F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1
给定 n
,请计算 F(n)
。
示例 1:
输入:n = 2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1
示例 2:
输入:n = 3
输出:2
解释:F(3) = F(2) + F(1) = 1 + 1 = 2
示例 3:
输入:n = 4
输出:3
解释:F(4) = F(3) + F(2) = 2 + 1 = 3
用简单的题目学会动态规划的解题方法论
dp[i]的定义为:第i个数的斐波那契数值是dp[i]
题目已经把递推公式直接给我们了:状态转移方程 dp[i] = dp[i - 1] + dp[i - 2];
题目中把如何初始化直接给我们了
dp[0] = 0;
dp[1] = 1;
从递归公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的
按照这个递推公式dp[i] = dp[i - 1] + dp[i - 2],我们来推导一下,当N为10的时候,dp数组应该是如下的数列:
0 1 1 2 3 5 8 13 21 34 55
如果代码写出来,发现结果不对,就把dp数组打印出来看看和我们推导的数列是不是一致的。
完整代码:
public int fib(int n) {
if (n <= 1) return n;
int[] dp = new int[2];
dp[0] = 0;
dp[1] = 1;
for (int i = 2; i <= n; i++) {
int sum = dp[0] + dp[1];
dp[0] = dp[1];
dp[1] = sum;
}
return dp[1];
}
力扣题目链接
假设你正在爬楼梯。需要 n
阶你才能到达楼顶。
每次你可以爬 1
或 2
个台阶。你有多少种不同的方法可以爬到楼顶呢?
示例 1:
输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶
示例 2:
输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶
爬到第一层楼梯有一种方法,爬到二层楼梯有两种方法。
那么第一层楼梯再跨两步就到第三层 ,第二层楼梯再跨一步就到第三层。
所以到第三层楼梯的状态可以由第二层楼梯 和 到第一层楼梯状态推导出来,那么就可以想到动态规划了。
dp[i]: 爬到第i层楼梯,有dp[i]种方法
从dp[i]的定义可以看出,dp[i] 可以有两个方向推出来。
首先是dp[i - 1],上i-1层楼梯,有dp[i - 1]种方法,那么再一步跳一个台阶不就是dp[i]了么。
还有就是dp[i - 2],上i-2层楼梯,有dp[i - 2]种方法,那么再一步跳两个台阶不就是dp[i]了么。
那么dp[i]就是 dp[i - 1]与dp[i - 2]之和!即dp[i] = dp[i - 1] + dp[i - 2] 。
注:在推导dp[i]的时候,一定要时刻想着dp[i]的定义,否则容易跑偏。这体现出确定dp数组以及下标的含义的重要性!
需要注意的是:题目中说了n是一个正整数,题目根本就没说n有为0的情况。
所以本题其实就不应该讨论dp[0]的初始化!
dp[1] = 1,dp[2] = 2,这个初始化大家应该都没有争议的。
所以:不考虑dp[0]如果初始化,只初始化dp[1] = 1,dp[2] = 2,然后从i = 3开始递推,这样才符合dp[i]的定义。
从递推公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,遍历顺序一定是从前向后遍历的
举例当n为5的时候,dp = [1, 2, 3, 5, 8]
完整代码
public int climbStairs(int n) {
if (n <= 1) return n;
int[] dp = new int[n + 1]; // 因为不考虑0层,所以从下标1开始要多申请一个空间
dp[1] = 1;
dp[2] = 2;
for (int i = 3; i <= n; i++) {
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n];
}
力扣题目链接
给你一个整数数组 cost
,其中 cost[i]
是从楼梯第 i
个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。
你可以选择从下标为 0
或下标为 1
的台阶开始爬楼梯。
请你计算并返回达到楼梯顶部的最低花费。
示例 1:
输入:cost = [10,15,20]
输出:15
解释:你将从下标为 1 的台阶开始。
- 支付 15 ,向上爬两个台阶,到达楼梯顶部。
总花费为 15 。
示例 2:
输入:cost = [1,100,1,1,1,100,1,1,100,1]
输出:6
解释:你将从下标为 0 的台阶开始。
- 支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。
- 支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。
- 支付 1 ,向上爬一个台阶,到达楼梯顶部。
总花费为 6 。
dp[i]的定义:默认第一步都是不花费体力的,到达第i个台阶所花费的最少体力为dp[i]。
可以有两个途径得到dp[i],一个是dp[i-1] 一个是dp[i-2]。那么是选dp[i-1]还是dp[i-2]呢?
因为 cost[i]
是从楼梯第 i
个台阶向上爬需要支付的费用,一定是选最小的,所以dp[i] = min(dp[i - 1], dp[i - 2]) + cost[i];
根据递推公式,dp[i]由dp[i-1],dp[i-2]推出,既然初始化所有的dp[i]是不可能的,那么只初始化dp[0]和dp[1]就够了,其他的最终都是dp[0]dp[1]推出。
dp[0] = cost[0];
dp[1] = cost[1];
因为是模拟台阶,而且dp[i]又dp[i-1]dp[i-2]推出,所以是从前到后遍历cost数组就可以了。
拿示例2:cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1] ,来模拟一下dp数组的状态变化:
dp = [1, 100, 2, 3, 3, 103, 4, 5, 104, 6]
由题目示例“输入:cost = [10, 15, 20] 输出:15 ”可以知道,下标为1的时候,再走两步即可到楼顶
因此最后爬上楼顶所需要的,一定是从倒数第二步、倒数第一步来选一个花费最小的
完整代码:
public int minCostClimbingStairs(int[] cost) {
int[] dp = new int[cost.length];
dp[0] = cost[0];
dp[1] = cost[1];
// 计算到达每一层台阶的最小费用
for (int i = 2; i < cost.length; i++) {
dp[i] = Math.min(dp[i - 1], dp[i - 2]) + cost[i];
}
//最后一步,如果是由倒数第二步爬,则最后一步的体力花费可以不用算
return Math.min(dp[cost.length - 1], dp[cost.length - 2]);
}
cost[i]
是从楼梯第 i
个台阶向上爬需要支付的费用,所以从开始位置-1楼爬到第0个台阶和第1个台阶是不用花费的
还是用题目示例“输入:cost = [10, 15, 20] 输出:15 ”
要多定义一个位置,保存到楼顶需要的费用
int[] dp = new int[cost.length + 1];
比如说要爬到i=2
的位置,就要从i=0
,i=1
两个位置开始加上花费,看哪个总花费更少
到i=3
的位置同理
完整代码:
public int minCostClimbingStairs(int[] cost) {
int[] dp = new int[cost.length + 1];
// 从下标为 0 或下标为 1 的台阶开始,因此支付费用为0
dp[0] = 0;
dp[1] = 0;
// 计算到达每一层台阶的最小费用
for (int i = 2; i <= cost.length; i++) {
dp[i] = Math.min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
}
//最后一步,如果是由倒数第二步爬,则最后一步的体力花费可以不用算
return dp[cost.length];
}