基于变因子加权学习与邻代维度交叉策略的改进乌鸦算法求解单目标优化问题含Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

个人主页:Matlab科研工作室

个人信条:格物致知。

更多Matlab仿真内容点击

智能优化算法  神经网络预测 雷达通信  无线传感器

信号处理 图像处理 路径规划 元胞自动机 无人机

⛄ 内容介绍

针对乌鸦搜索算法(CSA)优化高维问题时存在寻优精度低,局部极值逃逸能力弱等问题,提出一种耦合多个体变因子加权学习机制与最优个体邻代维度交叉策略的改进乌鸦搜索算法(ICSA).该算法随迭代进程动态修正模型控制参数(感知概率和飞行长度),利用多个体的变因子加权学习机制保证子代个体同时继承跟随乌鸦与上代最优个体的位置信息以避免单个体继承的过快种群同化并减小陷入局部极值的风险;同时构建历史最优个体的邻代维度交叉策略,并按维度绝对差异大的优先替换原则更新最优个体位置,以保留历代最优维度信息并提高算法的局部极值逃逸能力.数值实验结果分别验证了模型参数对CSA算法性能的一定影响,加权学习因子不同递变形式对ICSA算法性能改善的有效性与差异性以及改进算法的优越寻优性能.

⛄ 部分代码

%% Benchmark Test functions

function [lb,ub,dim,fobj] = Get_Functions_details(F)

switch F

    case 'F1'

        fobj = @F1;

        lb=-100;

        ub=100;

        dim=30;

        

    case 'F2'

        fobj = @F2;

        lb=-10;

        ub=10;

        dim=30;

        

    case 'F3'

        fobj = @F3;

        lb=-100;

        ub=100;

        dim=30;

        

    case 'F4'

        fobj = @F4;

        lb=-100;

        ub=100;

        dim=30;

        

    case 'F5'

        fobj = @F5;

        lb=-30;

        ub=30;

        dim=30;

        

    case 'F6'

        fobj = @F6;

        lb=-100;

        ub=100;

        dim=30;

        

    case 'F7'

        fobj = @F7;

        lb=-1.28;

        ub=1.28;

        dim=30;

        

    case 'F8'

        fobj = @F8;

        lb=-500;

        ub=500;

        dim=30;

        

    case 'F9'

        fobj = @F9;

        lb=-5.12;

        ub=5.12;

        dim=30;

        

    case 'F10'

        fobj = @F10;

        lb=-32;

        ub=32;

        dim=30;

        

    case 'F11'

        fobj = @F11;

        lb=-600;

        ub=600;

        dim=30;

        

    case 'F12'

        fobj = @F12;

        lb=-50;

        ub=50;

        dim=30;

        

    case 'F13'

        fobj = @F13;

        lb=-50;

        ub=50;

        dim=30;

        

    case 'F14'

        fobj = @F14;

        lb=-65.536;

        ub=65.536;

        dim=2;

        

    case 'F15'

        fobj = @F15;

        lb=-5;

        ub=5;

        dim=4;

        

    case 'F16'

        fobj = @F16;

        lb=-5;

        ub=5;

        dim=2;

        

    case 'F17'

        fobj = @F17;

        lb=[-5,0];

        ub=[10,15];

        dim=2;

        

    case 'F18'

        fobj = @F18;

        lb=-5;

        ub=5;

        dim=2;

        

    case 'F19'

        fobj = @F19;

        lb=0;

        ub=1;

        dim=3;

        

    case 'F20'

        fobj = @F20;

        lb=0;

        ub=1;

        dim=6;     

        

    case 'F21'

        fobj = @F21;

        lb=0;

        ub=10;

        dim=4;    

%         dim=4;

    case 'F22'

        fobj = @F22;

        lb=0;

        ub=10;

        dim=4;    

        

    case 'F23'

        fobj = @F23;

        lb=0;

        ub=10;

        dim=4;

    end

    

end

% F1

function o = F1(x)

o=sum(x.^2);

end

% F2

function o = F2(x)

o=sum(abs(x))+prod(abs(x));

end

% F3

function o = F3(x)

dim=size(x,2);

o=0;

for i=1:dim

    o=o+sum(x(1:i))^2;

end

end

% F4

function o = F4(x)

o=max(abs(x));

end

% F5

function o = F5(x)

dim=size(x,2);

o=sum(100*(x(2:dim)-(x(1:dim-1).^2)).^2+(x(1:dim-1)-1).^2);

end

% F6

function o = F6(x)

o=sum(abs((x+.5)).^2);

end

% F7

function o = F7(x)

dim=size(x,2);

o=sum([1:dim].*(x.^4))+rand;

end

% F8

function o = F8(x)

o=sum(-x.*sin(sqrt(abs(x))));

end

% F9

function o = F9(x)

dim=size(x,2);

o=sum(x.^2-10*cos(2*pi.*x))+10*dim;

end

% F10

function o = F10(x)

dim=size(x,2);

o=-20*exp(-.2*sqrt(sum(x.^2)/dim))-exp(sum(cos(2*pi.*x))/dim)+20+exp(1);

end

% F11

function o = F11(x)

dim=size(x,2);

o=sum(x.^2)/4000-prod(cos(x./sqrt([1:dim])))+1;

end

% F12

function o = F12(x)

dim=size(x,2);

o=(pi/dim)*(10*((sin(pi*(1+(x(1)+1)/4)))^2)+sum((((x(1:dim-1)+1)./4).^2).*...

(1+10.*((sin(pi.*(1+(x(2:dim)+1)./4)))).^2))+((x(dim)+1)/4)^2)+sum(Ufun(x,10,100,4));

end

% F13

function o = F13(x)

dim=size(x,2);

o=.1*((sin(3*pi*x(1)))^2+sum((x(1:dim-1)-1).^2.*(1+(sin(3.*pi.*x(2:dim))).^2))+...

((x(dim)-1)^2)*(1+(sin(2*pi*x(dim)))^2))+sum(Ufun(x,5,100,4));

end

% F14

function o = F14(x)

aS=[-32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32;...

-32 -32 -32 -32 -32 -16 -16 -16 -16 -16 0 0 0 0 0 16 16 16 16 16 32 32 32 32 32];

for j=1:25

    bS(j)=sum((x'-aS(:,j)).^6);

end

o=(1/500+sum(1./([1:25]+bS))).^(-1);

end

% F15

function o = F15(x)

aK=[.1957 .1947 .1735 .16 .0844 .0627 .0456 .0342 .0323 .0235 .0246];

bK=[.25 .5 1 2 4 6 8 10 12 14 16];bK=1./bK;

o=sum((aK-((x(1).*(bK.^2+x(2).*bK))./(bK.^2+x(3).*bK+x(4)))).^2);

end

% F16

function o = F16(x)

o=4*(x(1)^2)-2.1*(x(1)^4)+(x(1)^6)/3+x(1)*x(2)-4*(x(2)^2)+4*(x(2)^4);

end

% F17

function o = F17(x)

o=(x(2)-(x(1)^2)*5.1/(4*(pi^2))+5/pi*x(1)-6)^2+10*(1-1/(8*pi))*cos(x(1))+10;

end

% F18

function o = F18(x)

o=(1+(x(1)+x(2)+1)^2*(19-14*x(1)+3*(x(1)^2)-14*x(2)+6*x(1)*x(2)+3*x(2)^2))*...

    (30+(2*x(1)-3*x(2))^2*(18-32*x(1)+12*(x(1)^2)+48*x(2)-36*x(1)*x(2)+27*(x(2)^2)));

end

% F19

function o = F19(x)

aH=[3 10 30;.1 10 35;3 10 30;.1 10 35];cH=[1 1.2 3 3.2];

pH=[.3689 .117 .2673;.4699 .4387 .747;.1091 .8732 .5547;.03815 .5743 .8828];

o=0;

for i=1:4

    o=o-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));

end

end

% F20

function o = F20(x)

aH=[10 3 17 3.5 1.7 8;.05 10 17 .1 8 14;3 3.5 1.7 10 17 8;17 8 .05 10 .1 14];

cH=[1 1.2 3 3.2];

pH=[.1312 .1696 .5569 .0124 .8283 .5886;.2329 .4135 .8307 .3736 .1004 .9991;...

.2348 .1415 .3522 .2883 .3047 .6650;.4047 .8828 .8732 .5743 .1091 .0381];

o=0;

for i=1:4

    o=o-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));

end

end

% F21

function o = F21(x)

aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];

cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];

o=0;

for i=1:5

    o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);

end

end

% F22

function o = F22(x)

aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];

cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];

o=0;

for i=1:7

    o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);

end

end

% F23

function o = F23(x)

aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];

cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];

o=0;

for i=1:10

    o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);

end

end

function o=Ufun(x,a,k,m)

o=k.*((x-a).^m).*(x>a)+k.*((-x-a).^m).*(x<(-a));

end

⛄ 运行结果

基于变因子加权学习与邻代维度交叉策略的改进乌鸦算法求解单目标优化问题含Matlab代码_第1张图片

基于变因子加权学习与邻代维度交叉策略的改进乌鸦算法求解单目标优化问题含Matlab代码_第2张图片

⛄ 参考文献

[1]赵世杰, 高雷阜, 于冬梅,等. 基于变因子加权学习与邻代维度交叉策略的改进CSA算法[J]. 电子学报, 2019, 47(1):9.

❤️ 关注我领取海量matlab电子书和数学建模资料

❤️部分理论引用网络文献,若有侵权联系博主删除

你可能感兴趣的:(优化求解,matlab,学习,算法)