展开全部
% 算法思路:
% 1. 在点集中任取3点A,B,C。
% 2. 作一个包含A,B,C三点的最小圆,圆周可能通过32313133353236313431303231363533e58685e5aeb931333264646533这3点,也可能只通过其中两点,但包含第3点.后一种情况圆周上的两点一定是位于圆的一条直径的两端。
% 3. 在点集中找出距离第2步所建圆圆心最远的D点,若D点已在圆内或圆周上,则该圆即为所求的圆,算法结束.否则执行第4步。
% 4. 在A,B,C,D中选3个点,使由它们生成的一个包含这4个点的圆为最小,这3 点成为新的A,B,C,返回执行第2步。
% 若在第4步生成的圆的圆周只通过A,B,C,D 中的两点,则圆周上的两点取成新的A和B,从另两点中任取一点作为新的C。
clear all;close all;clc;
x=[22 8 4 51 38 17 81 18 62]
y=[38 13 81 32 11 12 63 45 12]
plot(x,y,'*');hold on;
grid on%
set_3P=nchoosek(1:length(x),3);
AI=set_3P(1,1);
BI=set_3P(1,2);
CI=set_3P(1,3);
A=[x(AI) y(AI)];
B=[x(BI) y(BI)];
C=[x(CI) y(CI)];
while 1
R=minCirclePoints3(A,B,C);
cr=[R(1),R(2)];
r=zeros(1,length(x));
for i=1:length(x)
r(i)=sqrt((x(i)-cr(1))^2+(y(i)-cr(2))^2);
end;
maxValue=max(r); %或者N=max(r(:))
[mc]=find(maxValue==r);
if r(mc)<=R(3)%没有点在圆外,结束回家吃饭去
alpha=0:pi/20:2*pi;%角度[0,2*pi]
plot(cr(1)+R(3)*cos(alpha),cr(2)+R(3)*sin(alpha),'--r');%中心点在(R(1),R(2))半径为R(3)的圆
axis equal;
break;%所有点都被圆覆盖
else
%距离圆心最远的点在圆外
end;
D=[x(mc),y(mc)];
P=[A;B;C;D];%保存这四个点的坐标
DI=mc;
set_3P=nchoosek([AI,BI,CI,DI],3);
rSet=[];
for i=1:length(set_3P)
A=[x(set_3P(i,1)) y(set_3P(i,1))];
B=[x(set_3P(i,2)) y(set_3P(i,2))];
C=[x(set_3P(i,3)) y(set_3P(i,3))];
R=minCirclePoints3(A,B,C);
rSet=[rSet;[R,i]];%每行:圆心坐标,半径,第几组(每组包括随机的三个点)
end;
rSet=sortrows(rSet,3);%按照半径排序
% 在四个圆中找一个最小半径圆包含这四个点
for i=1:size(rSet,1)
for j=1:4
if sqrt((rSet(i,1)-(P(j,1) ))^2+ ( rSet(i,2)-(P(j,2)))^2) >rSet(i,3)%这个圆不行
break;
end
end;
if j>4%第i组三个点产生的圆可行--必然可以找到一个
break;
end;
end;
mc=rSet(i,4);
A=[x(set_3P(mc,1)) y(set_3P(mc,1))];
B=[x(set_3P(mc,2)) y(set_3P(mc,2))];
C=[x(set_3P(mc,3)) y(set_3P(mc,3))];
end;
%总结:根据算法我写的这个程序有个隐藏的问题,由于要看比赛了,没时间再纠正这个问题了。
-------------------------------------------------------------------------------
function R=minCirclePoints3(A,B,C)
X=[A(1) B(1) C(1)];
Y=[A(2) B(2) C(2)];
%计算三边的长度AB BC CA
len=[sqrt((X(1)-X(2))^2+(Y(1)-Y(2))^2) sqrt((X(2)-X(3))^2+(Y(2)-Y(3))^2) sqrt((X(3)-X(1))^2+(Y(3)-Y(1))^2)];
%在非特殊情况下计算三角形三角的余弦值 cosA,cosB,cosC
if(sum(len>0)==3)
abc=[cosABC(len(2),len(1),len(3)) cosABC(len(3),len(1),len(2)) cosABC(len(1),len(2),len(3))];
end
%两点重合、三点重合、三点共线
if(len(1)==len(2)+len(3))
r=len(1)/2;
a=(X(1)+X(2))/2;
b=(Y(1)+Y(2))/2;
R=[a b r];
elseif(len(2)==len(1)+len(3))
r=len(2)/2;
a=(X(2)+X(3))/2;
b=(Y(2)+Y(3))/2;
R=[a b r];
elseif(len(3)==len(1)+len(2))
r=len(3)/2;
a=(X(1)+X(3))/2;
b=(Y(1)+Y(3))/2;
R=[a b r];
%--------------------------------------------------------------------------
else
tmp=(abc<=0);
if(tmp(1))
r=len(2)/2;
a=(X(2)+X(3))/2;
b=(Y(2)+Y(3))/2;
R=[a b r];
elseif(tmp(2))
r=len(3)/2;
a=(X(1)+X(3))/2;
b=(Y(1)+Y(3))/2;
R=[a b r];
elseif(tmp(3))
r=len(1)/2;
a=(X(1)+X(2))/2;
b=(Y(1)+Y(2))/2;
R=[a b r];
elseif(sum(tmp)==0)
a=(((X(1)^2-X(2)^2+Y(1)^2-Y(2)^2)*(Y(2)-Y(3)))-((X(2)^2-X(3)^2+Y(2)^2-Y(3)^2)*(Y(1)-Y(2))))/(2*(X(1)-X(2))*(Y(2)-Y(3))-2*(X(2)-X(3))*(Y(1)-Y(2)));
b=(((X(1)^2-X(2)^2+Y(1)^2-Y(2)^2)*(X(2)-X(3)))-((X(2)^2-X(3)^2+Y(2)^2-Y(3)^2)*(X(1)-X(2))))/(2*(Y(1)-Y(2))*(X(2)-X(3))-2*(Y(2)-Y(3))*(X(1)-X(2))) ;
r=sqrt((X(1)-a)^2+(Y(1)-b)^2);
R=[a b r];
end
end
%d=linspace(0,2*pi,100);
%plot(a+r*sin(d),b+r*cos(d),'-',X(1),Y(1),'ro',X(2),Y(2),'bo',X(3),Y(3),'ko',a,b,'.')
%axis([0 10 0 10])
function c=cosABC(x,y,z)
c=(z^2+y^2-x^2)/(2*z*y);
end
end