作者|周伟能来源|小叮当讲SAS和PythonPython在机器学习(人工智能,AI)方面有着很大的优势。谈到人工智能,一般也会谈到其实现的语言Python。
前面有几讲也是关于机器学习在图像识别中的应用。今天再来讲一个关于运用google的深度学习框架tensorflow和keras进行训练深度神经网络,并对未知图像进行预测。
导入python模块导入图像数据合并列表数据将图片数据转化为数组显示一张图片训练神经网络我们可以看到测试集的准确率达到99.67%预测一个图像预测为汽车的概率为100%。
(括号内为真实标签)预测为美女的概率为100%。(括号内为真实标签)测试集中前15个图像预测完全正确。Nice!最后我们来识别单张图片。结果预测为汽车。
Nice!最后来预测一下外部随便下载的汽车或美女图片预测为汽车,不错!小编这里有10张图片,前5张为汽车图片,后五张为美女图片。下面进行批量预测:结果也是完全正确。
看到这里,感觉神经网络是不是很神奇,要想让神经网络预测得准确,我们就必须给予大量的数据进行训练模型,优化模型,以至于达到准确识别图像的目的,图像识别作为人工智能的一部分,现在已经慢慢走向成熟,虽然机器也有出错的时候,但是进过不断优化,错误率将会越来越小,相信机器智能或者人工智能时代能够创造出更多智能而美好的东西。
为社会,为人类的自由做出更大的贡献。
谷歌人工智能写作项目:神经网络伪原创
本质上是模式识别,把现实的东西抽象成计算机能够理解的数字文案狗。如果一个图片是256色的,那么图像的每一个像素点,都是0到255中间的一个值,这样你可以把一个图像转换成一个矩阵。如何去识别这个矩阵中的模式?
用一个相对来讲很小的矩阵在这个大的矩阵中从左到右,从上到下扫一遍,每一个小矩阵区块内,你可以统计0到255每种颜色出现的次数,以此来表达这一个区块的特征。
这样通过这一次“扫描”,你得到了另一个由很多小矩阵区块特征组成的矩阵。这一个矩阵比原始的矩阵要小吧?那就对了!
然后对这个小一点的矩阵,再进行一次上面的步骤,进行一次特征“浓缩”,用另一个意思来讲,就是把它抽象化。最后经过很多次的抽象化,你会将原始的矩阵变成一个1维乘1维的矩阵,这就是一个数字。
而不同的图片,比如一个猫,或者一个狗,一个熊,它们最后得到的这个数字会不同。
于是你把一个猫,一个狗,一个熊都抽象成了一个数字,比如0.34,0.75,0.23,这就达到让计算机来直接辨别的目的了。
人脸,表情,年龄,这些原理都是类似的,只是初始的样本数量会很大,最终都是通过矩阵将具体的图像抽象成了数字,因为计算机只认识数字。但是抽象的函数,会有所不同,达到的效果也会不同。
图片识别的实现基础是由图像处理、计算机视觉和模糊识别等多学科实现的,现阶段市面上已经有很多像图普科技成熟大厂可以提供智能审核的软件。
在人工智能中,实现图像识别有一种算法是基于深度学习多层神经网络实现的,主要是基于模仿人的神经网络,以神经元为单位,算法包含输入层,多个节点输出层,以及权重值,需要大量的训练样本去调整模型以达到误差值最小。
图像处理具体包括编码、压缩、增强、分割;图像识别包括特征提取、特征选择和分类分析,对图像类别和结构进行分析;图像理解包括机器学习和深度学习,即是对图像描述和解释。
深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据。
卷积神经网络(CNN)局部连接传统的神经网络是全连接,即一层的神经元与上一层的所有神经元都建立连接,这样导致参数非常多,计算量非常大,而CNN是局部连接,一层的神经元只与上一层的部分神经元建立连接,这样可以减少参数和计算量。
Technology-MachineLearning-FaceRegonition-CNN-LocalConnected权值共享给一张输入图片,用一个filter去扫时,filter里面的数就叫权重。
用该filter对整个图片进行了某个特征的扫描,例如Edgedetection,这个过程就是权值共享,因为权重不变。
Technology-MachineLearning-FaceRegonition-CNN-WeightSharing人脸识别多个CNN加其他层,遍历而成的人脸识别处理结构:Technology-MachineLearning-FaceRegonition-CNN-Example层提取到的信息的演进:Technology-MachineLearning-FaceRegonition-CNN-Example2人脸检测传统算法识别:滑动窗口+分类器用一个固定大小的窗口去滑动扫描图像,并通过分类器去分辨是否是人脸。
有时候人脸在图片中过小,所以还要通过放大图片来扫描。
Technology-MachineLearning-FaceRegonition-Window&Classifier训练:特征+Adaboost传统特征:LBP/HOG/Harr图片原始的RGB信息,维度太高,计算量过大,且不具备鲁棒性,即光照和旋转,对RGB信息影响非常大。
利用LBP得到二进制值,再转换成十进制:Technology-MachineLearning-FaceRegonition-LBP效果图:Technology-MachineLearning-FaceRegonition-LBP-ExampleAdaboost由于移动设备对计算速度有一定要求,所以用多个弱分类器加权叠加来完成一个强分类器,从而保证速度。
Technology-MachineLearning-FaceRegonition-Adaboost深度学习特征的选取是比较复杂的,可能需要大量的统计学和生物学知识积累,而深度学习不需要选择特征,这是其很大优势,另外通过GPU代替CPU等方式,可以得到一个更好的效果。
Technology-MachineLearning-FaceRegonition-DeepLeaning-Example关键点检测、跟踪传统算法Cascaderegression/ESR/SDM传统算法步骤:根据人脸检测的框位置,先初始化初始脸部轮廓位置;进行上一步位置和图形特征检测下一步位置(一般是迭代残差);进行迭代,最终得到相对准确的轮廓位置。
Technology-MachineLearning-FaceRegonition-KeyPoints深度学习深度学习算法步骤:对图像进行轮廓定位态校正;全局粗定位;局部精细定位。
作者:YI_LIN来源:简书。
深度学习在物体识别中最重要的进展体现在ImageNetILSVRC3挑战中的图像分类任务。传统计算机视觉方法在此测试集上最低的错误率是26.172%。
2012年,欣顿的研究小组利用卷积网络把错误率降到了15.315%。
此网络结构被称为AlexNet,与传统的卷积网络相比,它有三点与众不同之处:首先,AlexNet采用了dropout的训练策略,在训练过程中将输入层和中间层的一些神经元随机置零。
这模拟了噪音对输入数据的各种干扰使一些神经元对一些视觉模式产生漏检的情况。Dropout使训练过程收敛得更慢,但得到的网络模型更加鲁棒。其次,AlexNet采用整流线型单元作为非线性的激发函数。
这不仅大大降低了计算的复杂度,而且使神经元的输出具有稀疏的特征,对各种干扰更加鲁棒。第三,AlexNet通过对训练样本镜像映射和加入随机平移扰动,产生了的训练样本,减少了过拟合。
在ImageNetILSVRC2013比赛中,排名前20的小组使用的都是深度学习技术。
获胜者是纽约大学罗伯·费格斯(RobFergus)的研究小组,所采用的深度模型是卷积网络,并对网络结构作了进一步优化,错误率为11.197%,其模型称作Clarif。
在ILSVRC2014比赛中,获胜者GooLeNet[18]将错误率降到了6.656%。GooLeNet突出的特点是大大增加了卷积网络的深度,超过了20层,这在此之前是不可想象的。
很深的网络结构给预测误差的反向传播带了困难,这是因为预测误差是从最顶层传到底层的,传到底层的误差很小,难以驱动底层参数的更新。
GooLeNet采取的策略是将监督信号直接加到多个中间层,这意味着中间层和底层的特征表示也要能够对训练数据进行准确分类。如何有效地训练很深的网络模型仍是未来研究的一个重要课题。
虽然深度学习在ImageNet上取得了巨大成功,但是很多应用的训练集是较小的,在这种情况下,如何应用深度学习呢?
有三种方法可供参考:(1)可以将ImageNet上训练得到的模型作为起点,利用目标训练集和反向传播对其进行继续训练,将模型适应到特定的应用[10]。此时ImageNet起到预训练的作用。
(2)如果目标训练集不够大,可以将底层的网络参数固定,沿用ImageNet上的训练集结果,只对上层进行更新。
这是因为底层的网络参数是最难更新的,而从ImageNet学习得到的底层滤波器往往描述了各种不同的局部边缘和纹理信息,而这些滤波器对一般的图像有较好的普适性。
(3)直接采用ImageNet上训练得到的模型,把最高的隐含层的输出作为特征表达,代替常用的手工设计的特征。
深度学习最成功的应用是在音视频的识别上,几乎所有的商用语音识别都是深度学习来完成的。其次深度学习应用最成功的领域就是图像识别,目前识别准确率已经超越人类。
深度学习成了图像识别的标配,以至于目前做图像不懂深度学习都不好意思跟人打招呼。(这种状态个人觉得是不好的)其中图像识别中,应用最广的是人脸识别。
自然语言理解方面,深度学习也非常活跃,主要是使用一种叫做LSTM的深度学习方法。
深度学习已经深入各个领域无人车,智能回答,智能翻译,天气预报,股票预测,人脸比对,声纹比对,等其他许多有趣的应用,比如智能插画,自动作诗,自动写作文,等都可以通过深度学习来完成。
图像识别,是指利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。
一般工业使用中,采用工业相机拍摄图片,然后再利用软件根据图片灰阶差做进一步识别处理,图像识别软件国外代表的有康耐视等,国内代表的有图智能等。另外在地理学中指将遥感图像进行分类的技术。