动手学习深度学习笔记

阅读指南

  • 第一部分(第1章至第3章)涵盖预备工作和基础知识。第1章介绍深度学习的背景。第2章提供动手学深度学习所需要的预备知识。第3章包括深度学习最基础的概念和技术,如多层感知机和模型正则化。如果读者时间有限,并且只想了解深度学习最基础的概念和技术,那么只需阅读第一部分。
  • 第二部分(第4章至第6章)关注现代深度学习技术。第4章描述深度学习计算的各个重要组成部分,并为实现后续更复杂的模型打下基础。第5章解释近年来令深度学习在计算机视觉领域大获成功的卷积神经网络。第6章阐述近年来常用于处理序列数据的循环神经网络。阅读第二部分有助于掌握现代深度学习技术。
  • 第三部分(第7章至第10章)讨论计算性能和应用。第7章评价各种用来训练深度学习模型的优化算法。第8章检验影响深度学习计算性能的几个重要因素。第9章和第10章分别列举深度学习在计算机视觉和自然语言处理中的重要应用。这部分内容读者可根据兴趣选择阅读。
    动手学习深度学习笔记_第1张图片

1. 深度学习简介

2. 预备知识

2.1 环境配置

2.1.1 Anaconda

Anaconda是Python的一个开源发行版本,主要面向科学计算。我们可以简单理解为
Anaconda是一个预装了很多我们用的到或用不到的第三方库的Python。而且相比于大家熟悉的pip install命令,Anaconda中增加了conda install命令。当你熟悉了Anaconda以后会发现,conda install会比pip install更方便一些。 强烈建议先去看看最省心的Python版本和第三方库管理——初探Anaconda和初学 Python 者自学 Anaconda 的正确姿势-猴子的回答。

总的来说,我们应该完成以下几步:

  • 根据操作系统下载并安装Anaconda(或者mini版本Miniconda)并学会常用的几个conda命令,例如如何管理python环境、如何安装卸载包等;
  • Anaconda安装成功之后,我们需要修改其包管理镜像为国内源,这样以后安装包时就会快一些。

最省心的Python版本和第三方库管理
https://zhuanlan.zhihu.com/p/25198543

idle+cmd进入Python命令行这样反人类的入门方式
主角是Anaconda,之后会再写文章详细介绍Jupyter的配置(本地和服务器配置,包括Win Server和Linux Server,还有多用户版本的Jupyterhub配置
Anaconda是Python的一个开源发行版本,主要面向科学计算。我们可以简单理解为,Anaconda是一个预装了很多我们用的到或用不到的第三方库的Python。Anaconda中增加了conda install命令

自学 Anaconda 的正确姿势-猴子的回答。
https://www.zhihu.com/question/58033789/answer/254673663

简单来说,Anaconda是包管理器和环境管理器,Jupyter可以将数据分析的代码、图像和文档全部组合到一个web文档中。

2.1.2 Jupyter

已经安装,见CSDN文章

2.1.3 PyTorch

动手学习深度学习笔记_第2张图片

你可能感兴趣的:(深度学习,深度学习)