欢迎来到本博客❤️❤️❤️
博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
目录
1 概述
2 运行结果
3 参考文献
4 Matlab代码实现
多目标蚂蚁狮子优化算法(MOALO)。首先使用存储库来存储到目前为止获得的非主导帕累托最优解。然后使用轮盘机制从该存储库中选择解决方案,该机制基于解决方案作为蚁狮的覆盖范围,以引导蚂蚁进入多目标搜索空间的有前途的区域。
[1]Mirjalili, Seyedali, Pradeep Jangir, and Shahrzad Saremi. Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems." Applied Intelligence
(2016): 1-17, DOI: http://dx.doi.org/10.1007/s10489-016-0825-8
部分代码:
function [RWs]=Random_walk_around_antlion(Dim,max_iter,lb, ub,antlion,current_iter)
if size(lb,1) ==1 && size(lb,2)==1 %Check if the bounds are scalar
lb=ones(1,Dim)*lb;
ub=ones(1,Dim)*ub;
endif size(lb,1) > size(lb,2) %Check if boundary vectors are horizontal or vertical
lb=lb';
ub=ub';
endI=1; % I is the ratio in Equations (2.10) and (2.11)
if current_iter>max_iter/10
I=1+100*(current_iter/max_iter);
endif current_iter>max_iter/2
I=1+1000*(current_iter/max_iter);
endif current_iter>max_iter*(3/4)
I=1+10000*(current_iter/max_iter);
endif current_iter>max_iter*(0.9)
I=1+100000*(current_iter/max_iter);
endif current_iter>max_iter*(0.95)
I=1+1000000*(current_iter/max_iter);
end
% Dicrease boundaries to converge towards antlion
lb=lb/(I); % Equation (2.10) in the paper
ub=ub/(I); % Equation (2.11) in the paper% Move the interval of [lb ub] around the antlion [lb+anlion ub+antlion]
if rand<0.5
lb=lb+antlion; % Equation (2.8) in the paper
else
lb=-lb+antlion;
endif rand>=0.5
ub=ub+antlion; % Equation (2.9) in the paper
else
ub=-ub+antlion;
end% This function creates n random walks and normalize accroding to lb and ub
% vectors
for i=1:Dim
X = [0 cumsum(2*(rand(max_iter,1)>0.5)-1)']; % Equation (2.1) in the paper
%[a b]--->[c d]
a=min(X);
b=max(X);
c=lb(i);
d=ub(i);
X_norm=((X-a).*(d-c))./(b-a)+c; % Equation (2.7) in the paper
RWs(:,i)=X_norm;
end