import numpy as np
"""
函数说明:加载数据集
Parameters:
filename - 文件名
Returns:
dataMat - 数据集
labelMat - 标签
"""
def loadDataSet(filename):
numFeat = len((open(filename).readline().split('\t')))
dataMat = []; labelMat = []
fr = open(filename)
for line in fr.readlines():
linArr = []
curline = line.strip().split('\t')
for i in range(numFeat-1):
linArr.append(float(curline[i]))
dataMat.append(linArr)
labelMat.append(float(curline[-1]))
return dataMat,labelMat
"""
函数说明:单层决策树分类函数
Parameters:
dataMatrix - 数据矩阵
dimen - 第几个特征
threshIneq - 标志
Returns:
retArray - 分类结果
"""
def stumpClassify(dataMatrix,dimen,threshVal,threshIneq):
retArray = np.ones((np.shape(dataMatrix)[0],1))
if threshIneq == 'lt':
retArray[dataMatrix[:,dimen]<=threshVal] = -1.0
else:
retArray[dataMatrix[:,dimen]>threshVal] = -1.0
return retArray
"""
函数说明:找到数据集上最佳的单层决策树
Parameters:
dataArr - 数据矩阵
clssLabels - 数据标签
D - 样本权重
Returns:
bestStump - 最佳单层决策树信息
minError - 最小误差
bestClasEst - 最佳的分类结果
"""
def buildStump(dataArr,classLabels,D):
dataMatrix = np.mat(dataArr);labelMat = np.mat(classLabels).T
m,n = np.shape(dataMatrix)
numSteps = 10.0;bestStump={};bestClasEst = np.mat(np.zeros((m,1)))
minError = float('inf') # 最小误差为正无穷
for i in range(n):
rangeMin = dataMatrix[:,i].min()
rangeMax = dataMatrix[:,i].max()
stepSize = (rangeMax-rangeMin)/numSteps
for j in range(-1,int(numSteps)+1):
for inequal in ['lt','gt']:
threshVal = (rangeMin+float(j)*stepSize)
predictedVals = stumpClassify(dataMatrix,i,threshVal,inequal)
errArr = np.mat(np.ones((m,1)))
errArr[predictedVals == labelMat]=0
weightedError = D.T*errArr
if weightedError < minError:
minError = weightedError
bestClasEst = predictedVals.copy()
bestStump['dim'] = i
bestStump['thresh'] = threshVal
bestStump['ineq'] = inequal
return bestStump,minError,bestClasEst
"""
函数说明:Adaboost算法
Parameters:dataArr, classLabels, numIt = 40
returns:
weakClassArr - 训练好的分类器
aggClassEst - 类别估计累计值
"""
def adaBoostTrainDS(dataArr,classLabels,numIt=40):
weakClassArr = []
m = np.shape(dataArr)[0]
D = np.mat(np.ones((m,1))/m)
aggClassEst = np.mat(np.zeros((m,1)))
for i in range(numIt):
bestStump,error,clasEst = buildStump(dataArr,classLabels,D)
alpha = float(0.5*np.log((1.0-error)/max(error,1e-16)))
bestStump['alpha'] = alpha
weakClassArr.append(bestStump)
expon = np.multiply(-1*alpha*np.mat(classLabels).T,clasEst)
D = np.multiply(D,np.exp(expon))
D = D/D.sum()
aggClassEst += alpha*clasEst
aggErrors = np.multiply(np.sign(aggClassEst)!=np.mat(classLabels).T,np.ones((m,1)))
errorRate = aggErrors.sum()/m
if errorRate == 0.0: break
return weakClassArr,aggClassEst
"""
函数说明:AdaBoost分类函数
Parameters:
datToclass - 待分类样例
classifierArr - 训练好的分类器
Returns:
分类结果
"""
def adaClassify(daToClass,classifierArr):
datMatrix = np.mat(daToClass)
m = np.shape(datMatrix)[0]
aggClassEst = np.mat(np.zeros((m,1)))
for i in range(len(classifierArr)):
classEst = stumpClassify(datMatrix,classifierArr[i]['dim'],
classifierArr[i]['thresh'], classifierArr[i]['ineq'])
aggClassEst += classifierArr[i]['alpha']*classEst
return np.sign(aggClassEst)
if __name__ == '__main__':
dataArr,labelArr = loadDataSet('horseColicTraining2.txt')
weakClassArr,aggClassEst = adaBoostTrainDS(dataArr,labelArr)
testArr,testLabelArr = loadDataSet('horseColicTest2.txt')
predictions = adaClassify(dataArr,weakClassArr)
errArr = np.mat(np.ones((len(dataArr),1)))
errRate = float(errArr[predictions!=np.mat(labelArr).T].sum()/len(dataArr))
print("训练集的错误率:%.3f%%"% (errRate*100))
predictions = adaClassify(testArr, weakClassArr)
errArr = np.mat(np.ones((len(testArr), 1)))
errRate = float(errArr[predictions != np.mat(testLabelArr).T].sum() / len(testArr))
print("测试集的错误率:%.3f%%" % (errRate * 100))
训练集
测试集