pytorch中transforms.ToTensor()函数解析

torchvision.transforms.functional.py中to_tensor()函数源码:

def to_tensor(pic):
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.

    See ``ToTensor`` for more details.

    Args:
        pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
    if not(_is_pil_image(pic) or _is_numpy(pic)):
        raise TypeError('pic should be PIL Image or ndarray. Got {}'.format(type(pic)))

    if _is_numpy(pic) and not _is_numpy_image(pic):
        raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndim))

    if isinstance(pic, np.ndarray):
        # handle numpy array
        if pic.ndim == 2:
            pic = pic[:, :, None]

        img = torch.from_numpy(pic.transpose((2, 0, 1)))
        # backward compatibility
        if isinstance(img, torch.ByteTensor):
            return img.float().div(255)
        else:
            return img

    if accimage is not None and isinstance(pic, accimage.Image):
        nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.float32)
        pic.copyto(nppic)
        return torch.from_numpy(nppic)

    # handle PIL Image
    if pic.mode == 'I':
        img = torch.from_numpy(np.array(pic, np.int32, copy=False))
    elif pic.mode == 'I;16':
        img = torch.from_numpy(np.array(pic, np.int16, copy=False))
    elif pic.mode == 'F':
        img = torch.from_numpy(np.array(pic, np.float32, copy=False))
    elif pic.mode == '1':
        img = 255 * torch.from_numpy(np.array(pic, np.uint8, copy=False))
    else:
        img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
    # PIL image mode: L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK
    if pic.mode == 'YCbCr':
        nchannel = 3
    elif pic.mode == 'I;16':
        nchannel = 1
    else:
        nchannel = len(pic.mode)
    img = img.view(pic.size[1], pic.size[0], nchannel)
    # put it from HWC to CHW format
    # yikes, this transpose takes 80% of the loading time/CPU
    img = img.transpose(0, 1).transpose(0, 2).contiguous()
    if isinstance(img, torch.ByteTensor):
        return img.float().div(255)
    else:
        return img

从to_tensor()函数源码看出其接受PIL Image或numpy.ndarray格式,功能如下:

  • 先由HWC转置为CHW格式;
  • 再转为float类型;
  • 最后,每个像素除以255。

你可能感兴趣的:(Pytorch)