图像DCT原理C语言实现

图像DCT算法

@(Learning)[Auspice Vinson]

介绍

DCT 离散余弦变换,常用图像变换算法

  1. 分割:将图像分割成88或1616的小块
  2. DCT变换:对每块进行DCT变换
  3. 舍弃高频系数(AC系数),保留低频系数(DC系数)
  • 高频系数一般保存的是图像的边界、纹理信息
  • 低频系数保存的图像中平坦区域信息
  1. 图像的低频和高频
  • 高频区域指空域图像中突变程度大的区域

图像

二维DCT变换就是将二维图像从空间域转换到频域

  • 计算图像是由哪些二维余弦波构成

正变换

F = A f A T F = AfA^T F=AfAT
A ( i , j ) = c ( i ) c o s [ ( j + 0.5 ) π N i ] A(i,j) = c(i) cos[\frac{(j+0.5)\pi} {N}i] A(i,j)=c(i)cos[N(j+0.5)πi]
c ( i ) = { 1 N , i = 0 2 N , i ≠ 0 c(i)=\left\{\begin{array}{rcl}\sqrt{\frac{1}{N}}, & & {i =0}\\\sqrt{\frac{2}{N}}, & & {i\neq{0}}\\\end{array} \right. c(i)=N1 ,N2 ,i=0i=0

  • F 位变换得到的系数
  • f为图像像素值
  • A为转换矩阵
  • i 为二维波的水平方向频率
  • j为二维波的垂直方向频率
    • 取值范围都是 0-(N-1)
  • N为图像块大小

变换步骤

  1. 求出转换矩阵A
  2. 利用转换矩阵A,转换到频域
    • 由图像f的到系数矩阵F

数字模拟

# include
# include
# include
# include
# define N 8
# define PI 3.1415926

int i,j;
double *f = NULL;		//初始矩阵 
double *A = NULL;		//转换矩阵 
double *AT = NULL;		//系数矩阵转置 

void dct2(double *,double *);		//dct正变换  
void f_dct2(double *,double *);		//dct反变换 
void printM(double *,int,char *);	//打印矩阵 
void mulMatrix(double *P,double *Q,double *resM,int);	//矩阵乘法 
double *TMatrix(double *, int);		//转置矩阵 

int main(){
	f = (double *)malloc(N*N*sizeof(double));
	A = (double *)malloc(N*N*sizeof(double));
	AT = (double *)malloc(N*N*sizeof(double));
	/*
		time函数来获取系统时间
		1970年1月1日0点到现在时间的秒数
		然后将得到的time_t类型数据转化为(unsigned int)的数
	*/
	srand((unsigned int)time(NULL));
	/*
		rand()产生随机数时,
		如果用srand(seed)播下种子之后,一旦种子相同,
		产生的随机数将是相同的
	*/
	for(i = 0;i < N;++i)
		for(j = 0;j < N;++j)
			f[j + i*N] = rand()%100;
	

	printM(f,N,"f(原矩阵)=\n");
	
	//1根据公式,生成转换矩阵A
	double x0 = sqrt(1.0/N);
	double x1 = sqrt(2.0/N);
	for(i = 0;i < N;++i){
		for(j = 0;j < N;++j){
			if(i == 0){
				A[i*N+j] = x0*cos((2*j+1)*PI*i/(2*N));
			}else{
				A[i*N+j] = x1*cos((2*j+1)*PI*i/(2*N));
			}
		}
	}
	
	printM(A,N,"A(转换矩阵)=\n");
	AT = TMatrix(A,N);
	printM(AT,N,"AT(A转置矩阵)=\n");
	
	//2利用转换矩阵A,进行转换
	double *dct = (double *)malloc(N*N*sizeof(double));
	dct2(f,dct);
	printM(dct,N,"dct正变换矩阵=\n");
	
	free(A);
	free(f);
	free(dct); 
	free(AT);

	return 0;
} 

/* 二维dct转换函数 
	参数列表:
		in:输入矩阵
		out:输出矩阵 
*/
void dct2(double *in,double *out){
	double *tt = (double *)malloc(N*N*sizeof(double));
	mulMatrix(A,in,tt,N);
	//printM(tt,N,"tt=\n");
	mulMatrix(tt,AT,out,N);
	
	free(tt);
}

/*	矩阵乘法
	参数列表:
		P,Q:待乘矩阵
		resM:返回矩阵 
		N:矩阵阶 
	返回:
		结果矩阵 
*/
void mulMatrix(double *P,double *Q,double *resM,int n){
	int t;
	double res;
	
	for(i = 0;i < n;++i){
		for(t = 0;t < n;++t){
			res = 0;
			for(j = 0;j < n;++j)
				res += P[i*N+j]*Q[j*N+t];
			resM[i*N+t] = res;
		}
	}
} 

/*	打印矩阵
	参数列表:
		M:待打印矩阵
		n:矩阵的阶 
		str:待打印字符串 
*/
void printM(double *M,int n,char *str){
	printf("%s",str);

	for(i = 0;i < n;++i){
		printf("\t");
		for(j = 0;j < n;++j)
			printf("%.2lf\t",M[i*N+j]);
		printf("\n");
	}	
}

/*	矩阵转置函数
	参数列表:
		M:待转置矩阵
		n:矩阵的阶 
	返回:
		转置后的矩阵 
*/
double *TMatrix(double *M, int n){
	double *tmp = (double *)malloc(N*N*sizeof(double));
	for(j = 0;j < N;++j)
		for(i = 0;i < N;++i)
			tmp[i*N+j] = M[j*N+i];
	
	return tmp;
}

运行截图
图像DCT原理C语言实现_第1张图片

反变换

F = A f A T F=AfA^T F=AfAT
f = A − 1 F ( A T ) − 1 f = A^{-1} F (A^T)^{-1} f=A1F(AT)1

A是正交矩阵,所以有 A T = A − 1 AT=A−1 AT=A1,所以求得:
f = A T F A f = A^TFA f=ATFA

# include
# include
# include
# include
# define N 8
# define PI 3.1415926

int i,j;
double *f = NULL;		//初始矩阵 
double *A = NULL;		//转换矩阵 
double *AT = NULL;		//系数矩阵转置 

void dct2(double *,double *);		//dct正变换  
void f_dct2(double *,double *);		//dct反变换 
void printM(double *,int,char *);	//打印矩阵 
void mulMatrix(double *P,double *Q,double *resM,int);	//矩阵乘法 
double *TMatrix(double *, int);		//转置矩阵 

int main(){
	f = (double *)malloc(N*N*sizeof(double));
	A = (double *)malloc(N*N*sizeof(double));
	AT = (double *)malloc(N*N*sizeof(double));
	/*
		time函数来获取系统时间
		1970年1月1日0点到现在时间的秒数
		然后将得到的time_t类型数据转化为(unsigned int)的数
	*/
	srand((unsigned int)time(NULL));
	/*
		rand()产生随机数时,
		如果用srand(seed)播下种子之后,一旦种子相同,
		产生的随机数将是相同的
	*/
	for(i = 0;i < N;++i)
		for(j = 0;j < N;++j)
			f[j + i*N] = rand()%100;
	

	printM(f,N,"f(原矩阵)=\n");
	
	//1根据公式,生成转换矩阵A
	double x0 = sqrt(1.0/N);
	double x1 = sqrt(2.0/N);
	for(i = 0;i < N;++i){
		for(j = 0;j < N;++j){
			if(i == 0){
				A[i*N+j] = x0*cos((2*j+1)*PI*i/(2*N));
			}else{
				A[i*N+j] = x1*cos((2*j+1)*PI*i/(2*N));
			}
		}
	}
	
	//printM(A,N,"A(转换矩阵)=\n");
	AT = TMatrix(A,N);
	//printM(AT,N,"AT(A转置矩阵)=\n");
	
	//2利用转换矩阵A,进行转换
	double *dct = (double *)malloc(N*N*sizeof(double));
	dct2(f,dct);
	printM(dct,N,"dct正变换矩阵=\n");
	
	double *f_dct = (double *)malloc(N*N*sizeof(double));
	f_dct2(dct,f_dct);
	printM(f_dct,N,"dct反变换矩阵=\n");
	
	free(A);
	free(f);
	free(dct); 
	free(AT);

	return 0;
} 

/*	二维DCT反变换
		参数列表:
			in:输入矩阵
			out:输出矩阵 

*/
void f_dct2(double *in,double *out){
	double *tmp = (double *)malloc(N*N*sizeof(double));
	
	mulMatrix(AT,in,tmp,N);
	mulMatrix(tmp,A,out,N);
}

/* 二维dct转换函数 
	参数列表:
		in:输入矩阵
		out:输出矩阵 
*/
void dct2(double *in,double *out){
	double *tt = (double *)malloc(N*N*sizeof(double));
	mulMatrix(A,in,tt,N);
	//printM(tt,N,"tt=\n");
	mulMatrix(tt,AT,out,N);
	
	free(tt);
}

/*	矩阵乘法
	参数列表:
		P,Q:待乘矩阵
		resM:返回矩阵 
		N:矩阵阶 
	返回:
		结果矩阵 
*/
void mulMatrix(double *P,double *Q,double *resM,int n){
	int t;
	double res;
	
	for(i = 0;i < n;++i){
		for(t = 0;t < n;++t){
			res = 0;
			for(j = 0;j < n;++j)
				res += P[i*N+j]*Q[j*N+t];
			resM[i*N+t] = res;
		}
	}
} 

/*	打印矩阵
	参数列表:
		M:待打印矩阵
		n:矩阵的阶 
		str:待打印字符串 
*/
void printM(double *M,int n,char *str){
	printf("%s",str);

	for(i = 0;i < n;++i){
		printf("\t");
		for(j = 0;j < n;++j)
			printf("%.2lf\t",M[i*N+j]);
		printf("\n");
	}	
}

/*	矩阵转置函数
	参数列表:
		M:待转置矩阵
		n:矩阵的阶 
	返回:
		转置后的矩阵 
*/
double *TMatrix(double *M, int n){
	double *tmp = (double *)malloc(N*N*sizeof(double));
	for(j = 0;j < N;++j)
		for(i = 0;i < N;++i)
			tmp[i*N+j] = M[j*N+i];
	
	return tmp;
}

图像DCT原理C语言实现_第2张图片

DCT大作业

流程图

图像DCT原理C语言实现_第3张图片

代码

# include
# include
# include
# include
# define N 8
# define PI 3.1415926

int choose = 0;				//选择图片 
int i,j;
double *f = NULL;		//初始矩阵 
double *A = NULL;		//转换矩阵 
double *AT = NULL;		//系数矩阵转置 

/*DCT相关函数*/
void dct2(double *,double *);		//dct正变换  
void f_dct2(double *,double *);		//dct反变换 
void printM(double *,int,char *);	//打印矩阵 
void mulMatrix(double *P,double *Q,double *resM,int);	//矩阵乘法 
double *TMatrix(double *, int);		//转置矩阵 

/*附加函数*/
void showMenu(){
	printf("\n\n----------请选择----------\n");
	printf("\t1. IMgae-a\n");
	printf("\t2. IMgae-c\n");
	printf("\t3. IMgae-e\n");
	printf("\t4. exit\n");
	printf("----------endMenu----------\n");
} 
void executeFn();//执行主函数 

int main(){
	while(1){
		showMenu();
		scanf("%d",&choose);
		if(choose == 4)
			break;
			
		f = (double *)malloc(N*N*sizeof(double));
		A = (double *)malloc(N*N*sizeof(double));
		AT = (double *)malloc(N*N*sizeof(double));
		if(choose == 1){
			for(i = 0;i < N;++i)
				for(j = 0;j < N;++j){
					if(j < 4)
						f[i*N+j] = 0;
					else
						f[i*N+j] = 1;
				}
			executeFn(); 
		}else if(choose == 2){
			for(i = 0;i < N;++i)
				for(j = 0;j < N;++j){
					if(i < 4)
						f[i*N+j] = 0;
					else
						f[i*N+j] = 1;
				}
			executeFn(); 
		}else if(choose == 3){
			for(i = 0;i < N;++i)
				for(j = 0;j < N;++j){
					if(i%2 == 0){
						if(j%2 == 0)
							f[i*N+j] = 0;
						else
							f[i*N+j] = 1;
					}	else{
						if(j%2 == 1)
							f[i*N+j] = 0;
						else
							f[i*N+j] = 1;	
					}
				}
			executeFn();
		}
	}

	return 0;
} 

/*执行主函数*/
void executeFn(){
	printM(f,N,"f(原矩阵)=\n");
	
	//1根据公式,生成转换矩阵A
	double x0 = sqrt(1.0/N);
	double x1 = sqrt(2.0/N);
	for(i = 0;i < N;++i){
		for(j = 0;j < N;++j){
			if(i == 0){
				A[i*N+j] = x0*cos((2*j+1)*PI*i/(2*N));
			}else{
				A[i*N+j] = x1*cos((2*j+1)*PI*i/(2*N));
			}
		}
	}
	
	//printM(A,N,"A(转换矩阵)=\n");
	AT = TMatrix(A,N);
	//printM(AT,N,"AT(A转置矩阵)=\n");
	
	//2利用转换矩阵A,进行转换
	double *dct = (double *)malloc(N*N*sizeof(double));
	dct2(f,dct);
	printM(dct,N,"dct正变换矩阵=\n");
	
	double *f_dct = (double *)malloc(N*N*sizeof(double));
	f_dct2(dct,f_dct);
	printM(f_dct,N,"dct反变换矩阵=\n");
	
	free(A);
	free(f);
	free(dct); 
	free(AT);
}

/*	二维DCT反变换
		参数列表:
			in:输入矩阵
			out:输出矩阵 

*/
void f_dct2(double *in,double *out){
	double *tmp = (double *)malloc(N*N*sizeof(double));
	
	mulMatrix(AT,in,tmp,N);
	mulMatrix(tmp,A,out,N);
}

/* 二维dct转换函数 
	参数列表:
		in:输入矩阵
		out:输出矩阵 
*/
void dct2(double *in,double *out){
	double *tt = (double *)malloc(N*N*sizeof(double));
	mulMatrix(A,in,tt,N);
	//printM(tt,N,"tt=\n");
	mulMatrix(tt,AT,out,N);
	
	free(tt);
}

/*	矩阵乘法
	参数列表:
		P,Q:待乘矩阵
		resM:返回矩阵 
		N:矩阵阶 
	返回:
		结果矩阵 
*/
void mulMatrix(double *P,double *Q,double *resM,int n){
	int t;
	double res;
	
	for(i = 0;i < n;++i){
		for(t = 0;t < n;++t){
			res = 0;
			for(j = 0;j < n;++j)
				res += P[i*N+j]*Q[j*N+t];
			resM[i*N+t] = res;
		}
	}
} 

/*	打印矩阵
	参数列表:
		M:待打印矩阵
		n:矩阵的阶 
		str:待打印字符串 
*/
void printM(double *M,int n,char *str){
	printf("%s",str);

	for(i = 0;i < n;++i){
		printf("\t");
		for(j = 0;j < n;++j)
			printf("%.2lf\t",M[i*N+j]);
		printf("\n");
	}	
}

/*	矩阵转置函数
	参数列表:
		M:待转置矩阵
		n:矩阵的阶 
	返回:
		转置后的矩阵 
*/
double *TMatrix(double *M, int n){
	double *tmp = (double *)malloc(N*N*sizeof(double));
	for(j = 0;j < N;++j)
		for(i = 0;i < N;++i)
			tmp[i*N+j] = M[j*N+i];
	
	return tmp;
}

图像DCT原理C语言实现_第4张图片

DCT系数特点

  • DCT后的64个DCT频率系数与DCT前64个像素块对应
  • DC系数为出发点向下,向右的其他DCT系数,离DC分量越原,频率越高,幅度值越小
  • 单独一个图像的全部DCT系数块的频谱几乎集中在左上角系数块中

原因

  • DCT是没有压缩的无损变换过程
  • DCT的低频系数代表了图像的背景、轮廓,是保证图像传输业务质量(QoS)的重要信息
  • DCT高频系数是反映图像的边缘、细节的较次要的信息

你可能感兴趣的:(刷题,算法,计算机视觉)