- AI概率学预测足球大小球让球数据分析
sanx18
人工智能数据分析数据挖掘
在足球数据分析中,AI概率学预测主要涉及大小球和让球盘口的分析。以下是关键点:1.大小球分析大小球指机构设定的进球数预期,投注者预测实际进球数是否超过或低于该值。AI应用:历史数据:AI通过分析球队的历史进球、失球等数据,预测未来比赛进球数。机器学习:使用回归模型、神经网络等预测进球数,考虑球队实力、比赛风格、天气等因素。实时数据:结合实时比赛数据动态调整预测。2.让球分析让球是机构为平衡双方实力
- 【梯度下降算法】
蝉叫醒了夏天
机器学习算法
梯度下降算法:第一章梯度下降的历史沿革1.1优化方法的演进脉络从17世纪牛顿时代的数值解法,到20世纪最优控制理论的发展,直至现代机器学习对优化算法的特殊需求,梯度下降算法在数学优化史上占据重要地位。1947年FrankRosenblatt在感知机研究中首次系统应用梯度下降思想1.2机器学习时代的复兴21世纪深度学习革命使梯度下降算法获得新生:2006年Hinton团队在深度信念网络中的突破应用2
- 【Python基础详解】
蝉叫醒了夏天
Python数据结构python开发语言
Python基础详解Python是一门广受欢迎的编程语言,以其简洁易用和强大的功能而闻名。本文将详细讲解Python的基础知识,帮助初学者快速上手并掌握这门语言。第一部分:初识Python什么是Python?Python是一种高级编程语言,由GuidovanRossum于1989年发明,并于1991年首次发布。它以简洁的语法和强大的功能而受到广泛欢迎,适用于Web开发、数据分析、人工智能等多个领域
- 【Agent实战】RAG方式+结构化prompt(CoT)+API工具结合ChatGPT4o能力Agent项目实践(货物上架位置推荐助手)
姚瑞南
RAG技术应用探索大模型落地探索及agent搭建promptchatgpt自然语言处理人工智能AIGC
本文原创作者:姚瑞南AI-agent大模型运营专家,先后任职于美团、猎聘等中大厂AI训练专家和智能运营专家岗;多年人工智能行业智能产品运营及大模型落地经验,拥有AI外呼方向国家专利与PMP项目管理证书。(转载需经授权)目录结论效果图示1.prompt2.API工具封装3.知识库搭建4.测试用例结论成功利用ChatGPT4o版本结合RAG知识库方式,通过结构化prompt(CoT)调用API工具为用
- 你所不知道的关于AI的27个冷知识——AI的伦理问题
贫苦游商
人工智能大数据算法机器学习transformer
AI的伦理问题亲爱的朋友们,今天我们要探讨一个充满哲理与挑战的话题,那就是人工智能(AI)的伦理问题。想象一下,AI就像是一位超级英雄,拥有无尽的力量和智慧,但如果不加以规范和引导,它也可能成为一位不受控制的“反派”。让我们一起走进这个复杂而又有趣的世界,看看AI在伦理方面的种种问题和挑战。AI决策的透明度:黑盒子的谜团首先,我们来聊聊AI决策的透明度问题。想象一下,你有一个神奇的黑盒子,每次输入
- 普通人怎么利用GPT赚钱之创建自动化工具
贫苦游商
普通人利用AI搞钱系列gpt自动化运维人工智能算法机器学习
利用GPT创建自动化工具:从构想到实现的详细指南在当前快速发展的科技时代,人工智能(AI)正在改变各行各业的工作方式。对于普通人来说,利用GPT(GenerativePre-trainedTransformer)这样的语言模型来创建自动化工具,并通过这些工具赚钱,已经成为一种切实可行的方法。本文将探讨普通人如何在中文平台上利用GPT创建自动化工具,从而实现盈利。什么是GPT?首先,我们需要了解什么
- sparkML入门,通俗解释机器学习的框架和算法
Tometor
spark-ml机器学习算法回归数据挖掘人工智能scala
一、机器学习的整体框架(类比烹饪)假设你要做一道菜,机器学习的过程可以类比为:步骤-->烹饪类比-->机器学习对应1.确定目标|想做什么菜(红烧肉/沙拉)|明确任务(分类/回归/聚类)2.准备食材|买菜、洗菜、切菜|数据收集与预处理3.设计食谱|决定烹饪步骤和调料|选择算法和模型设计4.试做并尝味道|调整火候和调味|模型训练与调参5.最终成品|端上桌的菜|模型部署与应用二、机器学习的核心流程1.数
- RNN 实战指南:用 PyTorch 从零实现文本分类
吴师兄大模型
PyTorchpytorchpython人工智能RNN循环神经网络文本分类开发语言
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 计算机软著项目推荐
yzx991013
python数据库算法线性回归回归机器人
作为学生用户,软件技术专业一、选题方向建议非热门领域工具类软件避免人工智能、元宇宙等当前审核严格的热门方向。优先选择实用工具类软件,如数据处理工具、代码优化插件、校园管理系统(如考勤、选课、实验室预约系统)等。行业垂直应用针对教育、医疗、金融等细分领域开发软件,例如:学生成绩分析系统医疗数据管理工具小型金融计算器(如利息、汇率转换)。模块化拆分开发将复杂系统拆分为独立
- 软著申请模版
yzx991013
数据库python回归线性回归算法
一、软件著作权申请表模板markdownCopyCode**软件名称**:XXX(品牌/功能)系统V1.0(示例:智联校园活动管理系统V1.0/代码自动格式化助手V1.0)**分类号**:30200-0000(工具类软件通用分类号)**开发方式**:□独立开发□合作开发(勾选对应项)**著作权人**:
- 神经网络机器学习中说的过拟合是什么意思
yuanpan
机器学习神经网络人工智能
在神经网络和机器学习中,过拟合(Overfitting)是指模型在训练数据上表现非常好,但在未见过的测试数据上表现较差的现象。换句话说,模型过度学习了训练数据中的细节和噪声,导致其泛化能力(Generalization)下降,无法很好地适应新数据。过拟合的表现训练误差很低,但测试误差很高:模型在训练集上的准确率非常高,但在测试集上的准确率却显著下降。模型过于复杂:模型学习了训练数据中的噪声或不相关
- mybatisPlus多数据源方案
平原人
springbootmybatis
背景在微服务李娜一般一个服务只有一个数据源,但是在有的老项目或者一些特定场景需要多数据源链接不同的数据库,本文以mybatisPlus为基础给出解决方案多数据源场景分类情形一:项目启动就确定了情形一:一些sass系统里面动态确定的,比如说运行时建立的数据源,还有一些报表场景也是如此本文暂不讨论相关解决方案(本人都有使用过):1.mybatisPlus官网提供的提供框架,使用是使用注解切换缺点很大,
- 【学习笔记】Python零基础入门
疯语小咖
Python学习笔记学习python
目录前言一、Python优势二、Python解释器安装三、变量和数据类型1.驼峰式命名习惯2.变量命名规则3.基本操作符4.数据类型分类5.字符串格式化6.类型转换函数7.列表8.元组9.字典四、选择和循环控制结构1.if语句2.内联if语句3.for循环4.while循环5.错误提示语句五、函数和模块1.函数参数2.模块引入3.模块创建六、文件处理1.文本文件前两行读取2.文本文件按行循环读取3
- 造价算量审图多元化融合软件开发实战:技术架构与核心代码解析
夏末之花
架构
——从BIM模型解析到AI智能审图的完整实现路径1.技术架构设计该软件需融合以下模块:BIM/CAD模型解析引擎(支持Revit/DWG文件一键导入)智能算量核心算法(基于规则引擎与机器学习)协同审图平台(多人实时标注与版本控制)AI辅助决策系统(材料价格预测、工程量误差检测)技术栈推荐:前端:Three.js(3D模型渲染)+React(协同界面)后端:Python(算量算法)+Java(业务逻
- 基于大模型的Text2SQL微调的实战教程(二)
herosunly
AIGCText2SQL微调实战教程
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了基于大模型的Text2SQL微调的实战教程(二),希望对学习大语言模型的
- 开启AI开发新时代——全解析Dify开源LLM应用开发平台
gs80140
AI人工智能开源
开启AI开发新时代——全解析Dify开源LLM应用开发平台在人工智能迅速发展的今天,如何快速将创意转化为高效可用的应用成为开发者亟待解决的问题。Dify作为一款开源的LLM应用开发平台,以其直观的界面和强大的功能组合(包括agenticAI工作流、RAG流水线、agent能力、模型管理、可观测性等),让从原型设计到生产部署的过程变得简单而高效。本文将带你全面了解Dify的优势、核心功能、快速上手指
- 基于支持向量机SVM的电网负荷预测,libsvm工具箱详解,SVM详细原理
神经网络机器学习智能算法画图绘图
支持向量机SVM支持向量机算法机器学习SVM电网负荷预测svr
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题SVM应用实例,基于支持向量机SVM的电网负荷预测代码结果分析展望摘要基于支持向量机SVM的电网负荷预测,SVM原理,SVM工具箱详解,SVM常见改进方法支持向量机SVM的详细原理SVM的定义支持向量机(supportvectormachines,SVM)是一种二分类模型,它的基本模型是定义在特征空
- C++ 迭代器与常用算法
四代目 水门
C++学习笔记算法c++开发语言
C++迭代器与常用算法一、迭代器(Iterator)核心概念泛化指针,提供类似指针的操作(++,*,->)统一不同容器的访问方式,实现算法与容器的解耦分类(功能由弱到强):输入迭代器(只读)输出迭代器(只写)正向迭代器(单向遍历)双向迭代器(支持双向移动)随机访问迭代器(支持跳跃访问)关键特性cppvector::iteratorit;//随机访问迭代器list::iteratorlit;//双向
- angular自定义指令
~ rainbow~
js实用技巧angular.js前端javascript
1、什么是指令?官方文档的解释:指令是为Angular应用程序中的元素添加额外行为的类。使用Angular的内置指令,你可以管理表单、列表、样式以及要让用户看到的任何内容。2、指令的分类1)组件——带有模板的指令。这种指令类型是最常见的指令类型。2)属性型指令——更改元素、组件或其他指令的外观或行为的指令。3)结构型指令——通过添加和删除DOM元素来更改DOM布局的指令。内置属性指令:内置指令只会
- Angular指令
lvxinaidou
AngularTypeScriptangular.jstypescriptjavascript
1.上面是指令指令是为Angular应用程序中的元素添加额外行为的类。使用Angular的内置指令,你可以管理表单、列表、样式以及要让用户看到的任何内容。2.指令分类Angular指令的不同类型如下:组件——带有模板的指令。这种指令类型是最常见的指令类型。属性型指令——更改元素、组件或其他指令的外观或行为的指令。结构型指令——通过添加和删除DOM元素来更改DOM布局的指令。内置属性指令:ngCla
- Angular 指令的用法
guizi0809
angularangular
一、定义为Angular应用程序模板中的标签添加额外行为的类。二、分类内置指令属性型指令:NgClass、NgStyle、NgModel结构型指令:NgIf、NgFor、NgSwitch自定义指令自定义属性型指令创建及使用1.在directives文件目录创建highlight指令nggddirectives/highlight创建的highlight.directive.ts文件如下import
- 建议收藏!华为HCIE考试内容全攻略,助你备考一臂之力!
新盟IT教育
网络网络工程师网络工程师培训HCIE培训华为认证HCIE考试
在ICT领域,华为HCIE认证的含金量不言而喻,它是众多技术从业者梦寐以求的目标。然而,想要顺利通过华为HCIE考试,深入了解考试内容是关键。今天,就来和大家详细聊聊华为HCIE考试内容,为大家的备考之路提供一些方向。新盟教育专注华为认证培训十余年为你提供认证一线资讯!华为HCIE有多个领域方向,如数据通信、云计算、安全、人工智能等,不同方向的考试内容各有侧重,但都对考生的技术能力和综合素养提出了
- 计算机系统架构2
落——枫
系统架构
1.指令集结构的分类:堆栈;累加器;通用寄存器组2.通用寄存器结构分为寄存器-存储器结构(RM结构)和寄存器-寄存器结构(RR结构)3.寄存器的访问速度比存储器快4.registerintx;x被声明为一个寄存器变量。5.寻址方式:是指一种指令集结构如何确定所要访问的数据的地址。立即数寻址方式和偏移寻址方式的使用频度最高。6.对指令集的基本要求:完整性;规整性;高效率;兼容性7.CISC复杂指令集
- 系统结构知识点
落——枫
系统架构
1.主存和辅存以页面交换数据2.计算机系统=硬件固体+软件3.计算机系统结构概念的实质是确定计算机系统中软,硬件的界面,界面之上是软件实现的功能,界面之下是硬件和固体实现的功能4.计算机组成是指计算机系统结构的逻辑实现。计算机实现是指计算机组成的物理实现。5.计算机系统结构分类法:冯氏分类法和Flynn分类法Flynn分类法是按照指令流和数据流的多重性进行分类。如SISD;SIMD;MISD;MI
- 整理:开启新征程!四篇文章助力 AI,告别 “3D理解困难户”
mslion
人工智能3d大语言模型计算机视觉目标识别
近年来,人工智能的发展让大语言模型(MLLM)变得越来越强大,它们可以理解和处理文字、图片、视频等多种信息,在很多领域都有很好的应用。然而,当这些模型需要理解3D(立体)场景时,仍然面临一些困难。目前的MLLM主要是用2D图片训练出来的,也就是说,它们更擅长识别平面的信息,比如照片中的人和物体。但是,现实世界是三维的(3D),仅靠2D图片训练的模型很难准确理解物体的立体关系。例如,如果只给一个普通
- RAG(检索增强生成)系统实践与调优
python_知世
android金融自然语言处理大模型技术人工智能RAG大模型
在人工智能领域,检索增强生成(RetrievalAugmentedGeneration,RAG)是一种结合信息检索和生成式人工智能的技术,它通过从外部数据源中检索相关信息,来辅助大语言模型(LargeLanguageModel,LLM)生成更为准确、上下文相关的答案。1什么是RAG检索增强生成(RetrievalAugmentedGeneration,RAG)是一种结合信息检索和生成式人工智能的技
- 不同用户群体设计的Manus试用申请理由模板
xinxiyinhe
人工智能人工智能
注:仅供参考。以下是为不同用户群体设计的Manus试用申请理由模板,结合其核心功能与官方审核偏好撰写,可根据自身需求调整使用:模板1:学术研究场景申请理由:我目前从事人工智能与产业经济交叉领域的博士后研究,亟需通过AI技术快速处理大量非结构化数据(如政策文件、企业年报、行业研报)。Manus的「多智能体调度」与「跨平台工具调用」功能能显著提升研究效率,例如:自动化筛选并分析1000+份上市公司ES
- DeepSeek对于普通打工人来说有什么帮助呢?
人工智能
在当今快速变化的社会中,普通打工人面临着越来越多的挑战:职场竞争加剧、技能更新换代加快、工作与生活的平衡难以掌控等。在这样的背景下,如何提升自身竞争力、找到适合自己的职业发展路径,成为了每个打工人都需要思考的问题。而DeepSeek,作为一款基于人工智能和大数据分析的职业发展工具,正在为普通打工人提供全新的解决方案。本文将从多个角度探讨DeepSeek对于普通打工人的帮助,分析它如何通过职业规划、
- 豆包AI:打破智能边界,开启“人人可编程”的AI普惠时代
Herbig
AI人工智能
在人工智能技术狂飙突进的2024年,全球AI工具用户已突破12亿,但企业AI落地率仍不足35%——高昂的开发成本、复杂的技术门槛与碎片化的场景需求,如同三重枷锁禁锢着智能革命的红利释放。当大多数AI平台还在比拼模型参数时,豆包AI以“零代码交互+多模态引擎+垂直场景精调”的创新架构,正在重塑人机协作的范式。这款由字节跳动火山引擎团队打造的智能平台,不仅让AI开发效率提升400%,更在医疗、教育、工
- 论文学习:基于机器学习的光声图像分析1
superace7911
基于机器学习的光声图像处理机器学习人工智能图像处理
3/25——3/31期间论文学习笔记,关于基于机器学习的光声图像分析的6篇1区论文血管结构模拟&分割:Quantificationofvascularnetworksinphotoacousticmesoscopy链接数据集链接摘要这篇论文提出了一种新的方法,利用中观光声成像(MesoscopicPhotoacousticImaging,PAI)技术和高级图像分析技术,来非侵入性地定量化和分析活体
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc