- 如何使用Java爬虫获取阿里巴巴热卖商品推荐:代码示例与实践指南
小爬虫程序猿
Javajava爬虫python
在电商领域,获取热卖商品推荐对于商家和开发者来说至关重要。阿里巴巴提供了热卖商品推荐API接口,能够根据消费者的购买历史、浏览行为、搜索习惯等数据,自动推荐符合其需求的商品。以下将详细介绍如何使用Java爬虫获取阿里巴巴热卖商品推荐,并提供相关的代码示例。一、阿里巴巴热卖商品推荐API接口简介阿里巴巴热卖商品推荐API接口是一种基于人工智能算法的推荐系统,能够根据消费者的购买历史、浏览行为、搜索习
- AI与API的融合:构建智能互联技术世界的基石
IT数据V+I7809804594
人工智能数据分析python爬虫大数据
在当今科技飞速发展的时代,人工智能(AI)与应用程序接口(API)的融合正在开启智能应用的新纪元。AI以其强大的数据处理和分析能力,正在改变各行各业的工作方式,而API则作为连接技术与应用的桥梁,为AI技术的普及和应用提供了无限可能。本文将深入探讨AI与API的融合如何推动智能应用的创新和发展,以及其在各个领域的应用和前景。一、AI与API融合的背景随着大数据、云计算、物联网等技术的快速发展,人工
- 基于Spring Boot和Vue的人脸识别项目(源码)
AI人H哥会Java
JAVA大作业项目实战springbootvue.jsjava人工智能计算机视觉后端sql
背景随着人工智能技术的迅猛发展,生物识别技术的迅猛发展,人脸识别已经成为最具潜力的人工智能应用之一。它不仅在安全监控、金融支付、智能家居等多个领域得到了广泛应用,也逐渐进入日常生活场景。人脸识别作为一种生物特征识别技术,能够通过分析人脸图像中的特征点,实现对个体的身份识别。利用计算机视觉技术,系统能够快速从大量图片中定位并识别特定人脸,实现身份验证和信息检索。这一技术的应用,不仅提高了安全性,还提
- 人工智能伦理:技术发展背后的思考
m0_72547478
人工智能
近年来,人工智能技术呈爆发式发展,在医疗、交通、金融等诸多领域取得惊人成果,但与此同时,人工智能伦理问题日益凸显,引发广泛关注。数据隐私与安全首当其冲。AI系统依赖海量数据训练,这些数据包含个人信息、医疗记录等敏感内容。若数据保护不当,极易引发数据泄露风险,侵犯个人隐私。例如,某些智能健康APP,若未能加密传输用户健康数据,一旦遭受黑客攻击,用户的隐私将暴露无遗。算法偏见也是一大痛点。AI算法基于
- Imagen架构详解:理解其背后的技术与创新
范范0825
Imagen架构
Imagen架构详解:理解其背后的技术与创新引言近年来,生成式人工智能技术取得了飞速发展,特别是在图像生成领域。作为这一领域的重要创新之一,Imagen是由谷歌开发的一种基于文本生成图像的模型。它在生成高质量、逼真的图像方面表现出色,并通过其先进的架构和技术手段推动了图像生成的技术进步。Imagen不仅在图像生成质量上具有显著优势,还能够通过自然语言描述生成细致复杂的图像。本文将详细剖析Image
- 渗透测试术语--必要基础
大象只为你
跟我学网安知识网络安全
一、前言了解和记住渗透测试术语是网络安全技术人员必要的基础,能帮助我们有效沟通和合作、全面理解渗透测试流程、设计和规划渗透测试活动、安全漏洞识别和利用和规避法律和道德风险。我整理一部分术语,自己归为8个分类方便记忆。共整理了56个术语,每个术语都有简要的含义解释。二、渗透测试术语1、攻击介质1.1、漏洞硬件、软件、协议的缺陷,可以通过未授权的方式访问、破坏系统。1.2、木马获取用户权限的程序或者代
- 【MySQL】Mysql数据库导入导出sql文件、备份数据库、迁移数据库
程序员洲洲
数据库数据库mysql导入导出sqlsql文件备份迁移
本文摘要:本文提出了xxx的实用开发小技巧。作者介绍:我是程序员洲洲,一个热爱写作的非著名程序员。CSDN全栈优质领域创作者、华为云博客社区云享专家、阿里云博客社区专家博主。同时欢迎大家关注其他专栏,我将分享Web前后端开发、人工智能、机器学习、深度学习从0到1系列文章。同时洲洲已经建立了程序员技术交流群,如果您感兴趣,可以私信我加入我的社群,也可以直接vx联系(文末有名片)v:bdizztt随时
- python读取文件路径中有中文_转 python 读取中文文件名/中文路径
weixin_39845406
原博文2015-03-1322:22−python直接读取中文路径的文件时失败,可做如下处理:inpath='D:/work/yuanxx/在线导航/驾车导航/walk_log/20130619_172355.txt'uipath=unicode(ipath,"utf8")然后用"uipath"经...相关推荐2015-12-1421:45−前言:需要对某目录下的文件进行分类,目录是中文名字就会报
- 《电子制作从零开始》 第3章:电源电路制作
请向我看齐
LeetCodeleetcode
第3章:电源电路制作3.1直流电源基础直流电源的分类与工作原理分类:电池类直流电源:这是最常见的直流电源之一,如干电池、蓄电池等。干电池是通过化学能直接转换为电能,它的优点是携带方便、使用简单,像普通的碱性干电池,电压一般为1.5V,适用于小型电子设备,如遥控器、手电筒等。蓄电池则可以通过充电将电能储存起来,反复使用,例如铅酸蓄电池,常用于汽车、UPS(不间断电源)等设备中,它能够提供较大的电流和
- MYSQL数据库(二)
python小桦
数据库mysqloracle
SQL分类:分类全称解释DDLDataDefinitionLanguage数据定义语言,用来定义数据库对象(数据库,表,字段)DMLDataManipulationLanguage数据操作语言,用来对数据库表中的数据进行增删改DQLDataQueryLanguage数据查询语言,用来查询数据库中表的记录DCLDataControlLanguage数据控制语言,用来创建数据库用户,控制数据库的访问权
- 嵌入式硬件篇---PWM&电机&舵机
Ronin-Lotus
嵌入式硬件篇嵌入式硬件c语言学习单片机stm3251单片机硬件工程
文章目录前言第一部分:电机1.按照工作电源分类直流电机交流电机2.按照结构原理分类同步电机异步电机有刷电机无刷电机3.按照电机的使用目的驱动电机执行电机直驱电机编码器额外小知识:第二部分:PWM1.实质2.面积等效原理3.实例舵机舵机按转动角度分1.小角度舵机(0-90°)2.中角度舵机(0-180°)3.大角度舵机(0-360°)舵机按控制方式分1.数字舵机2.模拟舵机总结前言本文简单介绍了电机
- 计算机视觉与深度学习:使用深度学习训练基于视觉的车辆检测器(MATLAB源码-Faster R-CNN)
ZhShy23
javascript深度学习
在人工智能领域,计算机视觉是一个重要且充满活力的研究方向。它使计算机能够理解和分析图像和视频数据,从而做出有意义的决策。其中,目标检测是计算机视觉中的一项关键技术,它旨在识别并定位图像中的多个目标对象。车辆检测作为目标检测的一个重要应用,在自动驾驶、智能交通系统等领域有着广泛的应用前景。本文将介绍如何使用MATLAB和深度学习技术,特别是FasterR-CNN模型,来训练一个车辆检测器。文章目录一
- 【Python机器学习】无监督学习——K-均值聚类算法
zhangbin_237
Python机器学习机器学习算法pythonkmeansk-means均值算法
聚类是一种无监督的学习,它将相似的对象归到同一簇中,它有点像全自动分类。聚类方法几乎可以应用于所有的对象,簇内的对象越相似,聚类的效果越好。K-均值聚类算法就是一种典型的聚类算法,之所以称之为K-均值是因为它可以发现k个不同的簇,且每个簇的中心采用簇中所含值的均值计算而成。簇识别给出聚类结果的含义,假定有一些数据,现在将相似数据归到一起,簇识别会告诉我们这些簇到底都是些什么。聚类与分类的最大不同在
- 利用双分支CycleGAN进行图像数据的高效增强
jizhi-dataset
人工智能
随着人工智能技术的快速发展,图像数据处理变得越来越重要。为了提高图像数据的质量和可用性,我们需要采用高效的数据增强方法。双分支CycleGAN网络作为一种先进的图像处理技术,为我们提供了一种全新的解决方案。本文将详细介绍双分支CycleGAN的工作原理,并展示其在图像数据增强方面的实际效果。同时,我们也将讨论在实际应用过程中可能遇到的挑战以及如何解决这些问题。,,CycleGAN是一种用于图像到图
- 揭秘AIP智能体平台:构建未来AI基础设施的新引擎
大东(AIP内容运营专员)
人工智能
在人工智能的浪潮中,科技正在改变我们生活的方方面面。从智能推荐到自动驾驶,从个性化广告到实时风险控制,AI的触角无处不在。但这些令人瞩目的成果背后,究竟是什么在支撑着AI的飞速发展?答案是——人工智能平台。人工智能平台是连接计算资源、开发工具和行业应用的重要桥梁,支撑着从模型开发到行业场景落地的每一个环节。它不仅为开发者提供高效便捷的工具,还为企业创造了无限的创新可能。本文将带你深入了解人工智能平
- 【Python】已解决:WARNING: pip is configured with locations that require TLS/SSL, however the ssl module i
屿小夏
pythonpipssl
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- 《鸿蒙Next应用商店:人工智能开启智能推荐与运营新时代》
人工智能深度学习
在科技飞速发展的当下,鸿蒙Next系统的出现为操作系统领域带来了新的变革与机遇,而人工智能技术的融入更是让其应用商店的智能化推荐和运营迈向了一个全新的高度。用户画像精准构建在鸿蒙Next系统中,应用商店可以借助系统强大的权限管理和数据收集能力,全方位收集用户的多维度数据。通过对用户在应用商店内的浏览历史、下载记录、搜索关键词,以及在其他鸿蒙应用中的使用行为等多源数据进行汇总和分析,利用人工智能算法
- 机器学习特征重要性之feature_importances_属性与permutation_importance方法
一叶_障目
机器学习python数据挖掘
一、feature_importances_属性在机器学习中,分类和回归算法的feature_importances_属性用于衡量每个特征对模型预测的重要性。这个属性通常在基于树的算法中使用,通过feature_importances_属性,您可以了解哪些特征对模型的预测最为重要,从而可以进行特征选择或特征工程,以提高模型的性能和解释性。1、决策树1.1.sklearn.tree.Decision
- 机器学习-期末测试
难以触及的高度
机器学习python人工智能
机器学习-期末测试线性回归1.代码展示#coding=UTF-8#拆分训练集和测试集importmatplotlib.pyplotaspltfromsklearn.model_selectionimporttrain_test_split#是线性回归类是sklearn写好的根据梯度下降法fromsklearn.linear_modelimportLinearRegressionimportpand
- 机器学习的介绍
2201_75874206
机器学习人工智能
目录1.机器学习的定义2.机器学习的原理3.机器学习的方法4.机器学习的分类5.机器学习的评估6.机器学习的应用场景7.机器学习与人工智能的关系结论机器学习在自然语言处理中的最新应用和技术是什么?如何评估机器学习模型的性能,除了交叉验证、MSE和RMSE外,还有哪些其他重要的指标?在金融风险管理中,机器学习如何帮助预测市场趋势和信用风险?市场趋势预测信用风险评估机器学习与人工智能之间的关系在未来发
- Kaggle欺诈检测:使用生成对抗网络(GAN)解决正负样本极度不平衡问题
Loving_enjoy
论文深度学习计算机视觉人工智能
###Kaggle欺诈检测:使用生成对抗网络(GAN)解决正负样本极度不平衡问题####引言在金融领域中,欺诈检测是一项至关重要的任务。然而,欺诈交易数据往往呈现出正负样本极度不平衡的特点,这给机器学习模型的训练带来了挑战。传统的分类算法在面对这种不平衡数据时,往往会导致模型对多数类(正常交易)过拟合,而对少数类(欺诈交易)的识别能力较差。为了解决这个问题,生成对抗网络(GAN)提供了一种有效的手
- 【虚拟化】系统虚拟化的主要功能和分类
TrustZone_
虚拟化
1.3系统虚拟化的主要功能和分类系统虚拟化向下管理硬件资源,向上提供硬件抽象。本节主要介绍系统虚拟化的基本功能(包括CPU、内存和I/O虚拟化),并根据Hypervisor与物理资源和操作系统交互方式的不同,介绍了两种基本的虚拟化分类。然后简要介绍三种虚拟化的实现方式,从而帮助读者在整体上了解虚拟化不同实现方式对功能和性能的影响。1.3.1虚拟化基本功能系统虚拟化架构如图1-4所示(以经典的“一虚
- 一文读懂:无监督学习与有监督学习的区别与应用
码上飞扬
学习
在机器学习的世界里,无监督学习和有监督学习是两个最为常见且重要的概念。理解这两者的区别和应用场景,不仅有助于我们选择合适的算法和模型,还能帮助我们更好地解决实际问题。那么,什么是无监督学习和有监督学习呢?本文将带你详细了解这两种学习方式的定义、区别以及典型应用。目录无监督学习是什么?有监督学习是什么?无监督学习与有监督学习的主要区别无监督学习的典型应用有监督学习的典型应用如何选择合适的学习方法?1
- Spark Livy 指南及livy部署访问实践
house.zhang
大数据-Spark大数据
背景:ApacheSpark是一个比较流行的大数据框架、广泛运用于数据处理、数据分析、机器学习中,它提供了两种方式进行数据处理,一是交互式处理:比如用户使用spark-shell,编写交互式代码编译成spark作业提交到集群上去执行;二是批处理,通过spark-submit提交打包好的spark应用jar到集群中进行执行。这两种运行方式都需要安装spark客户端配置好yarn集群信息,并打通集群网
- 迅为RK3562开发板专为3562编写10大分类2900+页文档
mucheni
rk35623562
iTOP-3562开发板采用瑞芯微RK3562处理器,内部集成了四核A53+MaliG52架构,主频2GHZ,内置1TOPSNPU算力,RK809动态调频。支持OpenGLES1.1/2.0/3.2、0penCL2.0、Vulkan1.1内嵌高性能2D加速硬件。内置独立NPU,算力达1TOPS,可用于轻量级人工智能应用。支持几乎全格式的H.264解码,支持1080p@60fps的解码,支持4K@3
- 用TensorFlow.NET搭建一个全连接神经网络
chiyong7717
人工智能c#python
在本文中,我们将学习如何在C#中构建神经网络模型计算图。与线性分类器相比,神经网络的关键优势在于它可以分离不可线性分离的数据。我们将实现此模型来对MNIST数据集的手写数字图像进行分类。我们要构建的神经网络的结构如下。MNIST数据的手写数字图像有10个类(从0到9)。该网络具有2个隐藏层:第一层具有200个隐藏单元(神经元),第二层具有10个神经元(称为分类器层)。让我们一步一步地用代码来实现:
- C#遇见TensorFlow.NET:开启机器学习的全新时代
墨夶
C#学习资料1机器学习c#tensorflow
在当今快速发展的科技世界里,机器学习(MachineLearning,ML)已经成为推动创新的重要力量。从个性化推荐系统到自动驾驶汽车,ML的应用无处不在。对于那些习惯于使用C#进行开发的程序员来说,将机器学习集成到他们的项目中似乎是一项具有挑战性的任务。但随着TensorFlow.NET的出现,这一切变得不再困难。今天,我们将一起探索如何利用这一强大的工具,在熟悉的.NET环境中轻松构建、训练和
- 工业场景将成为AI大模型的重要战场!零基础入门AI大模型,看这篇就够了!
大模型扬叔
人工智能工业多模态大模型
前言2024年,各大公司推出强大理解能力的多模态大模型,将引领人工智能(AI)技术创新和应用,工业场景将成为多模态大模型的最佳实践场地。随着GPT-4o、Gemini1.5Pro、LLaVA1.6的发布,基于Transformer架构和海量数据训练的多模态大模型再次点燃通用人工智能(AGI),其对文本、图像等多模态输入的支持和强大的理解能力也象征着人工智能迈向通用人工智能(AGI)的新阶段。随着工
- 计算机考试电子邮件怎么回复,计算机基础知识电子邮件使用技巧集锦(二)
csp1223
计算机考试电子邮件怎么回复
计算机基础知识电子邮件使用技巧集锦(二)分类:计算机等级|更新时间:2013-01-07|来源:转载11、用ISP邮箱提高发信速度现在免费电子邮件大都支持SMTP和POP3协议,故在设置服务帐号时“工具”→“选项”→“邮件服务器”中的“发送邮件服务器SMTP”和“接受邮件服务器POP3”均填相同的服务器,如海南建恒电子邮局都填“www.88998.com”,但在使用中发现用此服务器发送邮件速度较慢
- v0.24.0 新特性支持标签分类,内置实现多种策略
后端java
开源项目敏感词核心https://github.com/houbb/sensitive-word敏感词控台https://github.com/houbb/sensitive-word-admin版本特性大家好,我是老马。敏感词标签分类一直是大家比较想要的一个功能特性,v0.24.0了开始内置支持标签分类,同时实现了多种策略。快速开始maven引入com.github.houbbsensitive
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc