通过配置的形式将数据库按照规则进行分片等操作
通过 Sharding-JDBC 实现水平分表: 数据库内用user_1 和 user_2 通过主键进行水平拆分,id为奇数放入user_1表,id为偶数放入user_2表
create database sharding character set = utf8;
use sharding;
create table user_1(
id int primary key auto_increment,
name varchar(20),
age int,
birthday datetime,
cmd varchar(200)
);
create table user_2(
id int primary key auto_increment,
name varchar(20),
age int,
birthday datetime,
cmd varchar(200)
);
Sharding-jdbc 为我们提供了整合springBoot的启动类,配置起来非常简单
<dependency>
<groupId>mysqlgroupId>
<artifactId>mysql-connector-javaartifactId>
<scope>runtimescope>
dependency>
<dependency>
<groupId>com.baomidougroupId>
<artifactId>mybatis-plus-boot-starterartifactId>
<version>3.4.1version>
dependency>
<dependency>
<groupId>org.apache.shardingspheregroupId>
<artifactId>sharding-jdbc-spring-boot-starterartifactId>
<version>4.1.1version>
dependency>
<dependency>
<groupId>com.alibabagroupId>
<artifactId>druidartifactId>
<version>1.1.8version>
dependency>
<dependency>
<groupId>org.springframework.bootgroupId>
<artifactId>spring-boot-starter-data-redisartifactId>
dependency>
##基本配置(正常操作)
server.port=8998
# mybatis-plus 配置
mybatis-plus.mapper-locations=classpath*:/mapper/**/*.xml
mybatis-plus.type-aliases-package=com.mt.bean
mybatis-plus.configuration.map-underscore-to-camel-case=true
mybatis-plus.configuration.log-impl=org.apache.ibatis.logging.stdout.StdOutImpl
spring.redis.host=120.25.227.88
spring.redis.password=123456
#sharding-jdbc的配置 ps:官网有详细的配置文件介绍:https://shardingsphere.apache.org/document/legacy/4.x/document/cn/manual/sharding-jdbc/configuration/config-spring-boot/
#声明一个数据库(虚拟的)
spring.shardingsphere.datasource.names=db1
#声明虚拟数据库对应的连接,驱动,用户名,密码,连接池等信息
spring.shardingsphere.datasource.db1.driver-class-name=com.mysql.cj.jdbc.Driver
spring.shardingsphere.datasource.db1.url=jdbc:mysql://localhost:3306/sharding?characterEncoding=utf8&useSSL=false&serverTimezone=Asia/Shanghai&rewriteBatchedStatements=true
spring.shardingsphere.datasource.db1.username=root
spring.shardingsphere.datasource.db1.password=root
spring.shardingsphere.datasource.db1.type=com.alibaba.druid.pool.DruidDataSource
#声明 表存放在对应的数据库 $->{0..1} 就是行内表达式
#这里的意思是db1库内有user虚拟表指向 user_1和user_2
spring.shardingsphere.sharding.tables.user.actual-data-nodes=db1.user_$->{1..2}
#设置主键字段
spring.shardingsphere.sharding.tables.user.key-generator.column=id
# 设置主键生成策略 可选内置的 SNOWFLAKE(雪花算法)/UUID
#也可以自定义(实现ShardingKeyGenerator,并配置META-INF/services/org.apache.shardingsphere.spi.keygen.ShardingKeyGenerator)
spring.shardingsphere.sharding.tables.user.key-generator.type=SNOWFLAKE
#设置 根据哪个字段进行分片
spring.shardingsphere.sharding.tables.user.table-strategy.inline.sharding-column=id
#分片规则奇数存入user_1 偶数存入user_2
spring.shardingsphere.sharding.tables.user.table-strategy.inline.algorithm-expression=user_$->{id % 2 != 0 ? 1:2}
spring.shardingsphere.props.sql.show=true
bean:
@Data
@NoArgsConstructor
@AllArgsConstructor
@TableName("user")
public class User {
@TableId(type = IdType.AUTO)
private Long id;
private String name;
private Integer age;
private Date birthday;
private String cmd;
}
mapper:
public interface UserMapper extends BaseMapper<User> {}
测试类:
@SpringBootTest
class ShardingSphereApplicationTests {
@Autowired
private UserMapper userMapper;
@Test
void contextLoads() {
User user1 = new User();
user1.setAge(10);
user1.setName("张三");
user1.setBirthday(new Date());
user1.setCmd("张三今年10岁");
User user2 = new User();
user2.setAge(20);
user2.setName("李四");
user2.setBirthday( new Date() );
user2.setCmd("李四今年20岁");
userMapper.insert( user2 );
}
}
经过测试用户张三被添加到 user_1,李四则被添加到 user_2
Sharding-jdbc为我们提供了2个默认的生成策略:
仅仅这2种并不能满足我们的需求,因此sharding-jdbc为我们提供了ShardingKeyGenerator
接口来允许我们自定义主键生成策略
实现: 这里通过redis生成自增的主键
@Component
@Slf4j
public class KeyGenerator implements ShardingKeyGenerator, ApplicationContextAware {
@Getter
@Setter
private Properties properties;
//必须设置为静态,否则为null
public static RedisTemplate redisTemplate;
@Override
public Comparable<?> generateKey() {
ValueOperations valueOp = redisTemplate.opsForValue();
return valueOp.increment("id");
}
//设置在yaml内的名字
@Override
public String getType() {
return "auto_increment";
}
@Override
public void setApplicationContext(ApplicationContext applicationContext) throws BeansException {
redisTemplate = applicationContext.getBean(StringRedisTemplate.class);
}
}
我们需要在resource下创建文件
META-INF\services\org.apache.shardingsphere.spi.keygen.ShardingKeyGenerator
并配置我们刚刚编写的主机生成器
com.mt.config.Sharding.KeyGenerator
只需要在配置文件内指定刚刚的生成器名即可
spring.shardingsphere.sharding.tables.user.key-generator.type=auto_increment
上面演示的分表策略是sharding-jdbc为我们提供的 inline
的分片规则,可以通过编写行表达式
实现简单的表分片策略,例如根据id取模,根据性别去分类。但是对于一些较为复杂的分区策略,行表达式可能无法满足我们的要求,因此我们需要自定义表分片策略
案例: 根据当前的年月分,将数据插入不同的表中,比如数据库内有order_202001,order_202002等我们需要通过订单生成的日期动态的存入不同的表中:
create table `order_202001`(
id int primary key auto_increment,
date datetime,
price decimal(10,2),
cmd varchar(200)
);
create table `order_202002`(
id int primary key auto_increment,
date datetime,
price decimal(10,2),
cmd varchar(200)
);
create table `order_202003`(
id int primary key auto_increment,
date datetime,
price decimal(10,2),
cmd varchar(200)
);
@Data
@NoArgsConstructor
@AllArgsConstructor
@TableName("`order`")
public class Order {
@TableId(type = IdType.AUTO)
private Integer id;
private Date date;
private BigDecimal price;
private String cmd;
}
@Component
public class OrderTableShardingAlgorithm implements PreciseShardingAlgorithm<Date> {
@Override
public String doSharding(Collection<String> collection, PreciseShardingValue<Date> preciseShardingValue) {
//preciseShardingValue就是当前插入的字段值
//collection 内就是所有的逻辑表
//获取字段值
Date time = preciseShardingValue.getValue();
if(time == null){
throw new UnsupportedOperationException("prec is null");
}
SimpleDateFormat sdf = new SimpleDateFormat("yyyyMM");
String year =sdf.format(time);
for (String tableName : collection) {//循环表名已确定使用哪张表
String name = tableName.substring(tableName.length() - 6);
if(year.equals(name)){
return tableName;//返回要插入的逻辑表
}
}
return null;
}
}
#声明虚拟表
spring.shardingsphere.sharding.tables.order.actual-data-nodes=db1.order_$->{2000..2099}0$->{1..9},db1.order_$->{2000..2099}1$->{0..2}
#声明表内的主键
spring.shardingsphere.sharding.tables.order.key-generator.column=id
#声明主键生成策略
spring.shardingsphere.sharding.tables.order.key-generator.type=order_auto_increment
#声明根据哪个字段进行分片
spring.shardingsphere.sharding.tables.order.table-strategy.standard.sharding-column=date
#自定义分片规则类
spring.shardingsphere.sharding.tables.order.table-strategy.standard.precise-algorithm-class-name=com.mt.config.Sharding.OrderTableShardingAlgorithm
@RestController
@RequestMapping("order")
public class OrderController {
@Autowired
private OrderMapper orderMapper;
@GetMapping("add")
public String add(Order order){
orderMapper.insert(order);
return "success";
}
}
参考博客: https://www.freesion.com/article/3959674242
通过sharding-jdbc对表进行水平拆分,已经能解决大部分的问题的,但是,随着数据量不断增加,单靠分表也不能提高太大的能,还要靠分库来解决
场景: 有2个数据库:sharding1,sharding2 ,每个库内有分为的2个表 user_1,user_2,sharding1库内存放的是年龄小于18岁的用户,sharding2放的是大于等于18的用户,然后user_1 存放的是id为奇数的,user_2是id为偶数的
create table user_1(
id int primary key auto_increment,
name varchar(200),
age int,
birthday datetime,
cmd varchar(200),
sex char(1)
);
create table user_2(
id int primary key auto_increment,
name varchar(200),
age int,
birthday datetime,
cmd varchar(200),
sex char(1)
);
# 配置逻辑库
spring.shardingsphere.datasource.names=db1,db2
# 配置第 1 个数据源
spring.shardingsphere.datasource.db1.type=com.alibaba.druid.pool.DruidDataSource
spring.shardingsphere.datasource.db1.driver-class-name=com.mysql.cj.jdbc.Driver
spring.shardingsphere.datasource.db1.url=jdbc:mysql://localhost:3306/sharding1?characterEncoding=utf8&useSSL=false&serverTimezone=Asia/Shanghai&rewriteBatchedStatements=true
spring.shardingsphere.datasource.db1.username=root
spring.shardingsphere.datasource.db1.password=root
# 配置第 2 个数据源
spring.shardingsphere.datasource.db2.type=com.alibaba.druid.pool.DruidDataSource
spring.shardingsphere.datasource.db2.driver-class-name=com.mysql.cj.jdbc.Driver
spring.shardingsphere.datasource.db2.url=jdbc:mysql://localhost:3306/sharding2?characterEncoding=utf8&useSSL=false&serverTimezone=Asia/Shanghai&rewriteBatchedStatements=true
spring.shardingsphere.datasource.db2.username=root
spring.shardingsphere.datasource.db2.password=root
# 配置 user 表规则
spring.shardingsphere.sharding.tables.user.actual-data-nodes=db$->{1..2}.user_$->{1..2}
# 配置 user 主键生成策略
spring.shardingsphere.sharding.tables.user.key-generator.column=id
spring.shardingsphere.sharding.tables.user.key-generator.type=user_auto
#配置 表分片策略
spring.shardingsphere.sharding.tables.user.table-strategy.inline.sharding-column=id
spring.shardingsphere.sharding.tables.user.table-strategy.inline.algorithm-expression=user_$->{ (id % 2)+1 }
#配置 库分片策略(主要就是增加了这个配置)
spring.shardingsphere.sharding.tables.user.database-strategy.inline.sharding-column=age
spring.shardingsphere.sharding.tables.user.database-strategy.inline.algorithm-expression=db$->{ (age>18 ? 2:1) }
剩下的操作不变
自定义分库策略和自定义分表一样,只需要实现 PreciseShardingAlgorithm接口,然后配置接口
public class UserDatabaseAlgorithm implements PreciseShardingAlgorithm<Integer> {
@Override
public String doSharding(Collection<String> collection, PreciseShardingValue<Integer> preciseShardingValue) {
//collection 内是所有的数据库名称
Integer value = preciseShardingValue.getValue();
if(value.compareTo(18) >=0){
return "db2";
}else{
return "db1";
}
}
}
配置:
#配置 库分片策略
spring.shardingsphere.sharding.tables.user.database-strategy.standard.sharding-column=age
#这里指向刚刚自定义的类
spring.shardingsphere.sharding.tables.user.database-strategy.standard.precise-algorithm-class-name=com.mt.config.UserDatabaseAlgorithm
在某些情况下,我们可能回出现2个数据库内同一个名字的表,然后数据必须保持一致,在进行插入数据时回同时往2个数据库内插入数据,要么都成功,要么都失败
场景: 在sharding1 和sharding2 两个数据库内创建 common表
create table common(
id int primary key,
name varchar(20)
);
# 配置真实数据源
spring.shardingsphere.datasource.names=db1,db2
# 配置第 1 个数据源
spring.shardingsphere.datasource.db1.type=com.alibaba.druid.pool.DruidDataSource
spring.shardingsphere.datasource.db1.driver-class-name=com.mysql.cj.jdbc.Driver
spring.shardingsphere.datasource.db1.url=jdbc:mysql://localhost:3306/sharding1?characterEncoding=utf8&useSSL=false&serverTimezone=Asia/Shanghai&rewriteBatchedStatements=true
spring.shardingsphere.datasource.db1.username=root
spring.shardingsphere.datasource.db1.password=root
# 配置第 2 个数据源
spring.shardingsphere.datasource.db2.type=com.alibaba.druid.pool.DruidDataSource
spring.shardingsphere.datasource.db2.driver-class-name=com.mysql.cj.jdbc.Driver
spring.shardingsphere.datasource.db2.url=jdbc:mysql://localhost:3306/sharding2?characterEncoding=utf8&useSSL=false&serverTimezone=Asia/Shanghai&rewriteBatchedStatements=true
spring.shardingsphere.datasource.db2.username=root
spring.shardingsphere.datasource.db2.password=root
#配置2个数据库的公共表(重点)
spring.shardingsphere.sharding.broadcast-tables=common
#配置表主键
spring.shardingsphere.sharding.tables.common.key-generator.column=id
#配置主键生成策略
spring.shardingsphere.sharding.tables.common.key-generator.type=user_auto
使用:
创建 entity,mapper和service:
@Data
@NoArgsConstructor
@AllArgsConstructor
public class Common {
private Integer id;
private String name;
}
public interface CommonMapper extends BaseMapper<Common> {
}
@Service
public class CommonService {
@Autowired
private CommonMapper commonMapper;
//这里必须加事务,否则可能出现一个数据库插入成功另一个不成功的情况
@Transactional(rollbackFor = Exception.class)
public void insert(Common common){
commonMapper.insert(common);
}
}
测试:
@SpringBootTest
class ShardingJdbcApplicationTests {
@Autowired
private CommonService commonService;
@Test
void contextLoads() {
commonService.insert(new Common(1,"abcdadfa"));
}
}
sharding-jdbc为我们提供了Mysql主从复制的数据库动态切换功能,只需要进行相应的配置即可实现主从复制环境下的动态切换数据源
场景: mysql配置了主从复制主库是sharding1,从库是sharding2和sharding3。sharding1负责增删改操作,sharding2和sharding3只接受查询操作
1.创建数据库表
create table student(
id int primary key auto_increment,
name varchar(200)
);
2.配置
# 配置真实数据源
spring.shardingsphere.datasource.names=db1,db2,db3
# 配置第 1 个数据源
spring.shardingsphere.datasource.db1.type=com.alibaba.druid.pool.DruidDataSource
spring.shardingsphere.datasource.db1.driver-class-name=com.mysql.cj.jdbc.Driver
spring.shardingsphere.datasource.db1.url=jdbc:mysql://localhost:3306/sharding1?characterEncoding=utf8&useSSL=false&serverTimezone=Asia/Shanghai&rewriteBatchedStatements=true
spring.shardingsphere.datasource.db1.username=root
spring.shardingsphere.datasource.db1.password=root
# 配置第 2 个数据源
spring.shardingsphere.datasource.db2.type=com.alibaba.druid.pool.DruidDataSource
spring.shardingsphere.datasource.db2.driver-class-name=com.mysql.cj.jdbc.Driver
spring.shardingsphere.datasource.db2.url=jdbc:mysql://localhost:3306/sharding2?characterEncoding=utf8&useSSL=false&serverTimezone=Asia/Shanghai&rewriteBatchedStatements=true
spring.shardingsphere.datasource.db2.username=root
spring.shardingsphere.datasource.db2.password=root
# 配置第 2 个数据源
spring.shardingsphere.datasource.db3.type=com.alibaba.druid.pool.DruidDataSource
spring.shardingsphere.datasource.db3.driver-class-name=com.mysql.cj.jdbc.Driver
spring.shardingsphere.datasource.db3.url=jdbc:mysql://localhost:3306/sharding3?characterEncoding=utf8&useSSL=false&serverTimezone=Asia/Shanghai&rewriteBatchedStatements=true
spring.shardingsphere.datasource.db2.username=root
spring.shardingsphere.datasource.db2.password=root
#重点
#配置 虚拟数据库ds, 真实的主库为db1
spring.shardingsphere.sharding.master-slave-rules.ds.master-data-source-name=db1
#配置 虚拟数据库ds, 真实的从库为db2
spring.shardingsphere.sharding.master-slave-rules.ds.slave-data-source-names=db2,db3
#配置student表的真实数据库(注意配置的是ds数据库)
spring.shardingsphere.sharding.tables.student.actual-data-nodes=ds.student
3 测试
//编写bean mapper
@Data
@NoArgsConstructor
@AllArgsConstructor
public class Student {
private Integer id;
private String name;
}
public interface StudentMapper extends BaseMapper<Student> {}
//测试:
@Test
public void tet2(){
System.out.println("=====================插入数据库======================");
studentMapper.insert(new Student(1,"abc"));
System.out.println("=====================查询数据库======================");
studentMapper.selectList(null);
System.out.println("=====================查询数据库======================");
studentMapper.selectList(null);
System.out.println("=====================查询数据库======================");
studentMapper.selectList(null);
}