- pytorch实现cifar10多分类总结
L_pyu
人工智能pytorch分类
cifar-10简介:CIFAR-10是一个常用的图像分类数据集,每张图片都是3×32×32,3通道彩色图片,分辨率32×32。它包含了10个不同类别,每个类别有6000张图像,其中5000张用于训练,1000张用于测试。这10个类别分别为:飞机、汽车、鸟类、猫、鹿、狗、青蛙、马、船和卡车。CIFAR-10分类任务是将这些图像正确地分类到它们所属的类别中。对于这个任务,可以使用深度学习模型,如卷积
- React 和 Vue _使用区别
开心小老虎
react知识点+组件vue3知识点+组件前端知识点vue.jsreact.js前端
目录一、框架介绍1.Vue2.React二、框架结构1.创建应用2.框架结构三、使用区别1.单页面组成2.样式3.显示响应式数据4.响应式html标签属性5.控制元素显隐6.条件渲染7.渲染列表react和vue是目前前端比较流行的两大框架,前端程序员应该将两种框架都掌握,本文总结一些基本知识点的使用区别。一、框架介绍1.VueVue是一个框架,也是一个生态。其功能覆盖了大部分前端开发常见的需求。
- 多分类—微调DistilBERT对生物医学文本进行实验方法多分类:Automated Text Mining of Experimental Methodologies from Biomedical
小小帅AIGC
informationextraction人工智能自然语言处理语言模型多分类学术领域生物医学
AutomatedTextMiningofExperimentalMethodologiesfromBiomedicalLiterature从生物医学文献中自动挖掘实验方法文本paper:https://arxiv.org/abs/2404.13779github:本文做的就是微调DistilBERT去做多分类任务,训练自己的数据集,分类每个句子对应的实验方法。没有什么讲的。文章目录~1.背景动机
- nvm的使用汇总
柒柒钏
小知识点安装教程NVM
nvm的使用汇总在Linux中安装nvm使用nvm安装Node.js一些特殊用法总结在Linux中安装nvm运行以下命令,用来下载并执行nvm的安装脚本:curl-o-https://raw.githubusercontent.com/nvm-sh/nvm/v0.40.0/install.sh|bash注意:v0.40.0是截至2023年的最新稳定版本。如果需要其他版本,请替换为对应的版本号。安装
- 数据挖掘技术介绍
柒柒钏
数据挖掘数据挖掘人工智能
数据挖掘技术介绍分类聚类关联规则挖掘预测异常检测特征选择与降维文本挖掘序列模式挖掘深度学习集成学习数据挖掘(DataMining)是一种从大量数据中提取有用信息和模式的技术,旨在从数据中发现隐藏的规律、趋势或关系,从而为决策提供支持。分类定义:是一种监督学习方法,用于将数据分为不同的类别。功能:根据已标记的训练数据,学习一个模型,用于预测新数据的类别。方法:决策树、支持向量机、神经网络、逻辑回归、
- Spring Cloud 与微服务学习总结(14)—— 云原生时代,如何从 Java 开发者转型微服务?
一杯甜酒
SpringCloud与微服务java云原生springcloud微服务微服务架构
前言根据维基百科定义,微服务不是整体应用程序中的一个层。相反,微服务是一个独立的业务功能,具有清晰的接口,并且可以通过内部组件实现分层架构。从战略角度来看,微服务架构基本上遵循“做一件事,就要做得好”的Unix哲学。为了应对传统单体架构的缺陷,微服务架构被企业广泛应用。然而,实践之前有很多问题都需要提前考虑清楚,比如Java背景的开发者是否更有优势?微服务、容器化、DevOps和CI/CD之间的关
- 深度学习在医疗影像诊断中的应用与实现
Evaporator Core
#DeepSeek快速入门人工智能#深度学习深度学习人工智能
引言随着人工智能技术的快速发展,深度学习在医疗领域的应用日益广泛,尤其是在医疗影像诊断方面。医疗影像数据量大、复杂度高,传统的诊断方法往往依赖于医生的经验,容易受到主观因素的影响。而深度学习通过自动学习特征,能够从海量数据中提取出有用的信息,辅助医生进行更精准的诊断。本文将探讨深度学习在医疗影像诊断中的应用,并通过代码示例展示如何实现一个简单的医疗影像分类模型。深度学习在医疗影像诊断中的应用1.图
- PINN物理信息网络 | 基于物理信息神经网络PINN求解Burger方程
算法如诗
物理信息网络(PINN)神经网络人工智能深度学习物理信息网络
基于物理信息神经网络(PINN)求解Burger方程的研究背景源于对非线性偏微分方程(PDE)求解方法的不断探索和改进。传统的数值方法,如有限差分法和有限元法,通常需要进行网格离散化和迭代求解,对于复杂的非线性问题计算成本较高。因此,研究人员开始探索基于机器学习和神经网络的新方法来求解PDEs。神经网络在近年来取得了显著的发展,能够通过学习大量数据来建立输入和输出之间的复杂映射关系。然而,将神经网
- PINN物理信息网络 | 利用物理信息神经网络进行流体动力学建模
算法如诗
物理信息网络(PINN)神经网络机器学习人工智能流体动力学建模PINN物理信息网络
背景物理信息神经网络(Physics-InformedNeuralNetworks,PINN)是一种结合了神经网络和物理方程的方法,用于建模和求解物理问题。传统的基于物理方程的数值方法在处理复杂的非线性偏微分方程时可能面临数值稳定性、高计算复杂度和网格依赖性等问题。而PINN作为一种数据驱动的方法,通过使用神经网络来近似物理方程,能够有效地解决这些问题。在流体动力学建模中,PINN可以应用于求解N
- 图神经网络学习笔记—高级小批量处理(专题十四)
AI专题精讲
图神经网络入门到精通人工智能
小批量(mini-batch)的创建对于让深度学习模型的训练扩展到海量数据至关重要。与逐条处理样本不同,小批量将一组样本组合成一个统一的表示形式,从而可以高效地并行处理。在图像或语言领域,这一过程通常通过将每个样本缩放或填充为相同大小的形状来实现,然后将样本在一个额外的维度中分组。该维度的长度等于小批量中分组的样本数量,通常称为batch_size。由于图是能够容纳任意数量节点或边的最通用的数据结
- 1985-2024年地级市人工智能专利数据
经管数据库
人工智能
《地级市人工智能专利数据(1985-2024)》于2025年1月完成最新更新。数据聚焦于中国各地级市,时间跨度设定为1985年至2024年。在数据整理过程中,参照《关键数字技术专利分类体系(2023)》,依据其中“人工智能”类技术的专利分类号,结合国家知识产权局所提供的信息,对各地每年的专利申请展开搜索与匹配。在此基础上,从众多专利申请中精准筛选出属于“人工智能”类别的专利,并进行数量统计,数据涵
- YOLOv12模型详解及代码复现
清风AI
深度学习算法详解及代码复现计算机视觉YOLO人工智能机器学习神经网络python算法
算法背景在计算机视觉领域不断发展壮大的背景下,YOLOv12算法应运而生。这一突破性成果源自JosephRedmon和AliFarhadi等研究人员在华盛顿大学的开创性工作。他们的目标是解决实时物体检测这一关键问题,在速度和精度之间寻求最佳平衡。YOLOv12延续了前作YOLOv1的成功理念,将其定位为一种回归问题,而非传统的区域提议+分类方法。这种创新方法不仅简化了整个检测过程,还显著提高了处理
- YOLOv8涨点大全总结(源码)
清风AI
深度学习YOLO计算机视觉神经网络人工智能python
(需要全部源码请私信或留言)性能指标在探讨YOLOv8的性能提升之前,我们需要明确评估其性能的主要指标。这些指标不仅是衡量模型优劣的标准,也是后续改进工作的出发点。常见的性能指标包括:指标名称含义mAP5050%交并比阈值下的平均精度mAP50-9550-95%交并比阈值范围内,步长为5%的平均精度Precision预测正确的正样本占总预测正样本的比例Recall预测正确的正样本占实际正样本总数的
- 每天五分钟玩转深度学习PyTorch:基于GoogLeNet完成CAFIR10分类
每天五分钟玩转人工智能
深度学习框架pytorch深度学习pytorch分类GoogLeNet人工智能CAFIR10
本文重点前面我们终于使用pytorch搭建了GoogLeNet,本文我们使用该网络模型解决一个实际问题,也就是使用它完成CAFIR10分类,其实就这些任务而言,我们只要搭建好模型,然后把数据喂进去就行了,其它的地方都是一样的,就是网络模型不一样。代码
- Deepseek:物理神经网络PINN入门教程
天一生水water
神经网络人工智能深度学习
一、物理信息网络(PINN)的概念与原理1.定义与来源物理信息网络(Physics-InformedNeuralNetworks,PINN)是一种将物理定律(如偏微分方程、守恒定律等)嵌入神经网络训练过程的深度学习方法。其核心思想是通过神经网络同时拟合观测数据并满足物理约束,从而解决传统数值方法难以处理的高维、噪声数据或复杂边界条件问题。来源:PINN起源于对传统数值方法局限性的改进需求(如网格生
- Git学习总结(9)——如何构建你自己的 Git 服务器
一杯甜酒
Git
现在我们将开始学习如何构建一个Git服务器,如何在具体的事件中写一个针对特定的触发操作的自定义Git(例如通告),如何发布你的代码到一个网站。
- python实现KNN算法的手写数字识别:深入解析与完整项目流程
快撑死的鱼
Python算法精解算法
随着人工智能和机器学习的快速发展,图像识别技术在多个领域得到广泛应用。而手写数字识别作为图像识别的典型场景之一,已经成为研究者和开发者学习、应用机器学习算法的经典项目。本文将深入解析如何使用Python编程语言,结合KNN(K-最近邻)算法实现手写数字识别系统。文章不仅介绍了算法的核心原理,还从用户交互、图像处理、数据预处理等多个角度对整个项目进行了全方位的讲解。读者通过本文,可以全面掌握手写数字
- 《今日AI-人工智能-编程日报》
小亦工作室
人工智能
1.AI行业动态1.1Manus通用智能体初成型,开启AIAgent新时代中泰证券发布研报称,首款通用型AI智能体Manus已问世,能够将复杂任务拆解为可执行的步骤链,并在虚拟环境中灵活调用工具,标志着AI从“Reasoner”走向“Agent”阶段。Manus的成功引发了开源复现潮,DeepSeek模型已被整合到OWL项目中,并在GAIA基准测试中表现接近Manus。1.2DeepSeek-R2
- Android实现动态切换环境配置3.0版本
windfallsheng
Androidandroidjavaapache
文章目录前言先上图启动初始化环境配置环境配置入口环境配置初始化静态URL配置手输URL配置开关配置快捷测试入口环境配置主页面其它总结且看《Android实现动态切换环境配置4.0版本》前言在上一篇幅《Android实现动态切换环境配置2.0版本》我们实现了可以动态切换环境配置的功能,但是一些不同类型的配置参数没有进行区别对待,造成实现逻辑比较耦合,当前3.0版本从页面结构和代码实现上进行了拆分,方
- 1章5节:大模型术语解读与从生成到推理的演进
DAT|R科学与人工智能
人工智能
在人工智能的浩瀚宇宙中,大模型正以前所未有的速度演进,推动着科技变革的新浪潮。从多模态到通用模型,再到行业模型,人工智能的边界不断拓展,为各行各业带来了全新的机遇与挑战。本篇文章将深入剖析大模型相关的核心术语,探讨其内涵、应用及发展趋势,并回顾大模型从生成到推理的演进历程,解析全球科技巨头与国内前沿企业在这一领域的竞争与创新。让我们一同探索大模型的演进脉络,把握智能时代的发展脉搏。一、剖析大模型相
- 深度学习项目--基于DenseNet网络的“乳腺癌图像识别”,准确率90%+,pytorch复现
羊小猪~~
深度学习网络pytorch人工智能python机器学习分类
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊前言如果说最经典的神经网络,ResNet肯定是一个,从ResNet发布后,很多人做了修改,denseNet网络无疑是最成功的一个,它采用密集型连接,将通道数连接在一起;本文是基于上一篇复现DenseNet121模型,做一个乳腺癌图像识别,效果还行,准确率0.9+;CNN经典网络之“DenseNet”简介,源码研究与复现(pytorch):
- C++ 模板初阶总结
矛取矛求
c++开发语言
1.泛型编程目标:编写与类型无关的通用代码,提高代码复用性。问题:传统函数重载需为每种类型编写重复代码,维护成本高。解决方案:使用模板(Template),通过编译器自动生成特定类型的代码。2.函数模板定义:templatevoidSwap(T&left,T&right){ Ttemp=left; left=right; right=temp;}typename或class声明模板类型参数。
- Microsoft Fabric 功能更新!更多智能优化,数据平台更强大
近期,微软MicrosoftFabric又更新了,大大增强了AI方面的功能。迅易科技作为微软13年来紧密的生态合作伙伴,为300+行业头部客户实施1000+项目。今天,我们带大家来看下,MicrosoftFabric有什么新玩法?一年前,微软正式推出了一款端到端数据平台,MicrosoftFabric(国际版)是一个集成一体化的平台,提供支持各种数据项目的人工智能驱动服务,帮助所有数据团队能够更快
- MySQL Buffer Pool、Undo Log、脏页详解
学堂在线
Mysql数据库mysql数据库
文章目录1.BufferPool2.UndoLog3.脏页(DirtyPage)三者的协同工作常见问题总结MySQL中的BufferPool、UndoLog和脏页是InnoDB存储引擎的核心组件,共同保障了事务处理的高效性、一致性与持久性。以下是它们的详细解释及关联:1.BufferPool作用:BufferPool是InnoDB的内存缓存区域,用于缓存数据页和索引页,减少直接访问磁盘的开销,显著
- 数据分析及人工智能框架汇总
xihuanyuye
机器学习
一、数据分析二、人工智能1、Tensorflow1、简介TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理。Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow为张量从流图的一端流动到另一端计算过程。TensorFlow是将复杂的数据结构传输至人工智能神经网中进行分析和处理过程的系统。Tenso
- 【超全总结】JMeter vs K6 vs Locust,性能测试工具终极对比!
软件测试jmeter测试工具
引言在现代软件开发中,性能测试是保障系统稳定性和高并发能力的关键环节。然而,面对市面上众多的性能测试工具,我们该如何选择?今天,我们将对JMeter、K6、Locust进行全面对比,帮你找到最适合你的工具!1.工具概览工具语言适用场景优点缺点JMeterJava传统性能测试、WebAPI测试功能强大、插件丰富、支持GUI学习曲线陡峭,资源消耗大K6JavaScript现代DevOps、CI/CD集
- Vue.js 3 的设计思路:从声明式UI到高效渲染机制
前端 贾公子
vue.jsuiflutter
目录一、声明式UI与虚拟DOM的灵活性二、渲染器:虚拟DOM到真实DOM的桥梁三、组件的本质与实现四、编译与运行时的协同优化五、性能与可维护性的权衡总结Vue.js3作为新一代前端框架,其设计理念在声明式UI描述、虚拟DOM优化、组件化架构以及编译与运行时协作等方面实现了显著突破。本文将从多个角度深入探讨其设计思路。一、声明式UI与虚拟DOM的灵活性Vue.js3的核心特性之一是声明式UI描述,开
- 谈为什么KLA和Camtech公司为什么可以做到,半导体那边,晶圆,键合可以做到不管哪款新产品进来。编程2小时,上线后准确率可以直接做到99.9%、
*Major*
机器视觉
谈为什么KLA和Camtech公司为什么可以做到,半导体那边,晶圆,键合可以做到不管哪款新产品进来。编程2小时,上线后准确率可以直接做到99.9%、这么里面的AI原理没什么,还是这些公司把AI技术层面用出花了,一是他们有公司可能比较成立时间长,数据丰富。二是像AI深度学习网络冻结,或者自适应调参,都是一些AI技巧,他们用的比较好。三什么跨层特征解耦,实现的基础是他们对半导体理解比较深刻KLA和Ca
- AI 之路——数据分析(1)Pandas小结与框架整理
Robin_Pi
机器学习之路数据分析数据分析python人工智能可视化
目录1.写在前面1.1AI之路:1.2工具/技能:2.数据分析2.1数据分析的流程2.2数据的基本操作方法2.2.1Pandas概览2.2.2使用Pandas操作数据的核心(1)选择数据(2)操作数据2.2.2数据详解3.写在最后1.写在前面主要是阶段性框架总结1.1AI之路:数据分析——机器学习——深度学习——CV/NLP1.2工具/技能:Python、NumPy、Pandas、Matplotl
- 【每日一题】93. 复原 IP 地址
聆听逝去的流
每日一题leetcode算法每日一题回溯
文章目录题目解题思路代码(C++)回溯总结题目题目链接:93.复原IP地址有效IP地址正好由四个整数(每个整数位于0到255之间组成,且不能含有前导0),整数之间用'.'分隔。例如:"0.1.2.201"和"192.168.1.1"是有效IP地址,但是"0.011.255.245"、"192.168.1.312"和"
[email protected]"是无效IP地址。给定一个只包含数字的字符串s,用以表示一个
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f