目录
目标检测中有一个很重要的概念便是IOU
那么什么是IOU?
那么我们为什么要用IOU?
问题:给出两个矩形框,请计算出它们两个的IOU。
实现代码:
IOU是一种评价目标检测器的指标。
下图是一个示例:图中绿色框为实际框,红色框为预测框,当我们需要判断两个框之间的关系时,需要用什么指标呢?
此时便需要用到IOU。
计算IOU的公式为:
可以看到IOU是一个比值,即交并比。
在分子部分,值为预测框和实际框之间的重叠区域;
在分母部分,值为预测框和实际框所占有的总区域。
交区域和并区域的比值,就是IOU。
目标检测任务的结果是框的锁定,
因此当我们输入图片时,模型应该给出一个推测,也就是它认为在照片中哪些地方有物体,以及物体的范围。由此,模型推测的结果和目标之间就会出现一个误差,而评价这个误差程度的方法就是IoU。
Iou是一种评价指标,让我们能够比较不同的目标检测任务或者模型的优劣。
import cv2
import numpy as np
def CountIOU(RecA, RecB):
xA = max(RecA[0], RecB[0])
yA = max(RecA[1], RecB[1])
xB = min(RecA[2], RecB[2])
yB = min(RecA[3], RecB[3])
# 计算交集部分面积
interArea = max(0, xB - xA + 1) * max(0, yB - yA + 1)
# 计算预测值和真实值的面积
RecA_Area = (RecA[2] - RecA[0] + 1) * (RecA[3] - RecA[1] + 1)
RecB_Area = (RecB[2] - RecB[0] + 1) * (RecB[3] - RecB[1] + 1)
# 计算IOU
iou = interArea / float(RecA_Area + RecB_Area - interArea)
return iou
img = np.zeros((512,512,3), np.uint8)
img.fill(255)
RecA = [50,50,300,300]
RecB = [60,60,320,320]
cv2.rectangle(img, (RecA[0],RecA[1]), (RecA[2],RecA[3]), (0, 255, 0), 5)
cv2.rectangle(img, (RecB[0],RecB[1]), (RecB[2],RecB[3]), (255, 0, 0), 5)
IOU = CountIOU(RecA,RecB)
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(img,"IOU = %.2f"%IOU,(130, 190),font,0.8,(0,0,0),2)
cv2.imshow("image",img)
cv2.waitKey()
cv2.destroyAllWindows()