- 深度学习基础之循环神经网络
Ctrl+CV九段手
机器学习和深度学习rnn深度学习神经网络人工智能机器学习学习
目录基本概念与特点定义与工作原理结构组成应用领域自然语言处理语音识别时间序列分析优缺点优点缺点改进方法总结循环神经网络在自然语言处理中的最新应用和研究进展是什么?长短期记忆网络(LSTM)与门控循环单元(GRU)在解决梯度消失和爆炸问题上的具体差异和优势是什么?LSTM的结构与优势GRU的结构与优势具体差异门的数量:计算复杂度:性能对比:总结双向循环神经网络如何增强模型的上下文捕捉能力,与单向RN
- 【学习笔记】第三章深度学习基础——Datawhale X李宏毅苹果书 AI夏令营
MoyiTech
人工智能学习笔记
局部极小值与鞍点梯度为0的点我们统称为临界点,包括局部极小值、鞍点等局部极小值和鞍点的梯度都为0,那如何判断呢?先请出我们损失函数:L(θ),θ是模型中的参数的取值,是一个向量。由于网络的复杂性,我们无法直接写出损失函数,不过我们可以写出损失函数的近似取值。根据宋浩老师所讲的大学一年级高等数学的知识,我们可以通过三阶泰勒展开对损失函数在θ附近的取值进行近似:其中,θ是模型中的参数的取值,θ’是在θ
- 基于matlab的深度学习案例及基础知识专栏前言
逼子歌
matlab深度学习信号处理神经网络矩阵运算CNN
专栏简介内容涵盖深度学习基础知识、深度学习典型案例、深度学习工程文件、信号处理等相关内容,博客由基于matlab的深度学习案例、matlab基础知识、matlab图像基础知识和matlab信号处理基础知识四部分组成。一、基于matlab的深度学习案例1.1、matlab:基于模板匹配的车牌识别_阐述基于模板匹配的车牌识别的字符识别-CSDN博客1.2、基于卷积神经网络(CNN)的车牌自动识别系统(
- pytorch深度学习基础 7(简单的的线性训练,SGD与Adam优化器)
不是浮云笙
pytorch实战深度学习pytorch人工智能
接下来小编来讲一下一些优化器在线性问题中的简单使用使用,torch模块中有一个叫optim的子模块,我们可以在其中找到实现不同优化算法的类SGD随机梯度下降基本概念定义:随机梯度下降(SGD)是一种梯度下降形式,对于每次前向传递,都会从总的数据集中随机选择一批数据,即批次大小1。参数更新过程:这个参数的更新过程可以描述为随机梯度下降法,随机梯度下降(SGD)是一种简单但非常有效的方法,多用于支持向
- Datawhale AI夏令营第四期魔搭- AIGC文生图方向 task03笔记
汪贤阳
人工智能AIGC笔记
如何学习八图ai模型kolors1,Kolors是由快手公司开源的第三代文本到图像生成模型,基于StableDiffusion框架开发。它支持中英文输入,特别在中文内容的理解和生成上表现出色。2,深度学习基础:熟悉神经网络、卷积神经网络(CNN)、Transformer等深度学习模型的基本原理。自然语言处理(NLP):了解文本编码、语言模型等NLP技术,因为Kolors在生成图像时需要理解并处理输
- 1.深度学习基础-模型评估指标
alstonlou
深度学习指南深度学习人工智能机器学习算法python
模型评估指标针对不同类型的任务,需要通过不同的模型评价指标进行评价,在实际应用中,可能需要结合具体任务和需求选择合适的评估方法。有监督学习回归任务回归任务模型的评估主要通过误差和拟合优度来进行,常用的指标包括平均绝对误差(MAE)、均方误差(MSE)、均方根误差(RMSE)和决定系数(R²)。在回归任务中,我们主要关注模型预测值与实际值之间的差异大小以及模型对数据整体变化的解释能力。以下是具体介绍
- 深度学习基础——卷积神经网络(一)
牛哥带你学代码
Python数据分析python数学建模算法深度学习cnn人工智能
卷积操作与自定义算子开发卷积是卷积神经网络中的基本操作,对于图像的特征提取有着关键的作用,本文首先介绍卷积的基本原理与作用,然后通过编写程序实现卷积操作,并展示了均值、高斯与sobel等几种经典卷积核的卷积效果,接着调用MindSpore中的卷积算子Conv2d来实现卷积操作,最后介绍了MindSpore中pyfunc和TBE两种自定义算子实现方法。卷积基本原理1.1卷积的概念卷积操作发展于信号处
- 大语言模型学习路线:从入门到实战
Tim_Van
人工智能语言模型自然语言处理大语言模型大模型
大语言模型学习路线:从入门到实战在人工智能领域,大语言模型(LargeLanguageModels,LLMs)正迅速成为一个热点话题。本学习路线旨在为有基本Python编程和深度学习基础的学习者提供一个清晰、系统的大模型学习指南,帮助你在这一领域快速成长。本学习路线更新至2024年02月,后期部分内容或工具可能需要更新。适应人群已掌握Python基础具备基本的深度学习知识学习步骤本路线将通过四个核
- 深度学习基础 叁:反向传播算法
白拾Official
#深度学习神经网络算法网络深度学习人工智能
注:封面画师:新雨林-触站说明本页面无手机端适配,强制缩放阅读。使用纯html格式,保存教学用ppt,添加了部分个人笔记。目录工作正常,可以跳转。反向传播这里对反向传播的讲解比较奇怪,可能比较适合初学者理解。想要通过严谨的数学推导理解反向传播的同学,可以搜索一下。反向传播算法反向传播算法什么是正向传播网络什么是反向传播反向传播算法为什么需要反向传播图解反向传播反向传播计算链式求导法则案例1:通过反
- 深度学习基础之《TensorFlow框架(2)—图》
csj50
机器学习深度学习
一、什么是图结构1、图包含了一组tf.Operation代表的计算单元对象和tf.Tensor代表的计算单元之间流动的数据图结构:数据(Tensor)+操作(Operation)二、图相关操作1、默认图通常TensorFlow会默认帮我们创建一张图查看默认图的两种方法:(1)通过调用tf.compat.v1.get_default_graph()访问,要将操作添加到默认图形中,直接创建OP即可(2
- 深度学习基础之《TensorFlow框架(4)—Operation》
csj50
机器学习深度学习
一、常见的OP1、举例类型实例标量运算add,sub,mul,div,exp,log,greater,less,equal向量运算concat,slice,splot,canstant,rank,shape,shuffle矩阵运算matmul,matrixinverse,matrixdateminant带状态的运算variable,assgin,assginadd神经网络组件softmax,sig
- 大致聊聊ChatGPT的底层原理,实现方法
黑马程序员官方
chatgpt人工智能机器学习
文目录深度学习基础ChatGPT的本质ChatGPT原理详解一、深度学习基础—深度学习是什么?如何理解神经网络结构?关于生物神经网络结构如下:神经网络介绍人工神经网络(ArtificialNeuralNetwork,简写为ANN)也简称为神经网络(NN),是一种模仿生物神经网络结构和功能的计算模型。当电信号通过树突进入到核细胞时,会逐渐聚集电荷。达到一定的电位后,细胞会被激活,通过轴突发出信号。从
- 深度学习基础
EEPI
深度学习人工智能
深度学习基础highvariance/datamismatchwhatisdatamismatchhowtosolvedatamismatchdatasynthesis数据合成迁移学习与预训练/微调什么时候用迁移学习highvariance/datamismatchwhatisdatamismatch如果训练集和验证集的loss不一样,且验证集的loss高很多,有2种原因:1.方差太大。模型没见过
- 深度学习基础--反向传播
掰不开桃子的男人
Modelimage.png前向传播image.png反向传播求误差image.png求对J的影响image.pngimage.png求对J的影响image.pngimage.png误差反传image.pngimage.pngimage.png参考:深度学习—反向传播(BP)理论推导-Backpropagation算法的推导与直观图解-文之-博客园
- 深度学习基础之-3.3线性二分类的神经网络实现
SusanLovesTech
深度学习二分类神经网络线性实现python
线性二分类的神经网络实现提出问题回忆历史,公元前206年,楚汉相争,当时刘邦项羽麾下的城池地理位置如下:0.红色圆点,项羽的城池1.绿色叉子,刘邦的城池其中,在边界处有一些红色和绿色重合的城池,表示双方激烈争夺的拉锯战。样本序号123…119经度相对值0.0254.109…7.767纬度相对值3.4088.012…1.8721=汉,0=楚110…1问题:经纬度相对值为(5,1)时,属于楚还是汉?经
- 深度学习入门资料整理
AI视觉网奇
应该看的算法深度学习基础深度学习入门
深度学习基础总结,无一句废话(附完整思维导图)深度学习如何入门?-知乎深度学习入门基础讲义_shuzfan的博客-CSDN博客_深度学习入门神经网络15分钟入门!足够通俗易懂了吧-知乎深度学习基础知识点梳理-知乎
- 新书速览|PyTorch 2.0深度学习从零开始学
全栈开发圈
深度学习pytorch人工智能
实战中文情感分类、拼音汉字转化、中文文本分类、拼音汉字翻译、强化学习、语音唤醒、人脸识别01本书简介本书以通俗易懂的方式介绍PyTorch深度学习基础理论,并以项目实战的形式详细介绍PyTorch框架的使用。为读者揭示PyTorch2.0进行深度学习项目实战的核心技术,实战案例丰富而富有启发。02本书内容本书共分15章,内容包括PyTorch概述、开发环境搭建、基于PyTorch的MNIST分类实
- 基于Python的深度学习基础
程序媛了了
python开发语言
Python基础Python是一种开源的、简单易记、可以自由使用编程语言。深度学习将使用NumPy和Matplotlib这两种外部库Python有“解释器”和“脚本文件”两种运行模式Python能够将一系列处理集成为函数或类等模块NumPy中有很多用于操作多维数组的便捷方法类与对象变量是挂在对象身上的标签classMan:#定义了一个新类Man,类Man生成了实例(对象)m#类Man的构造函数(初
- 深度学习知识学习笔记
wyn20001128
图像处理深度学习算法
一相关的深度学习基础知识(1)线性回归 设房屋的⾯积为x1x_1x1,房龄为x2x_2x2,售出价格为yyy。我们需要建⽴基于输⼊x1x_1x1和x2x_2x2来计算输出的表达式,yyy也就是模型(model)。顾名思义,线性回归假设输出与各个输⼊之间是线性关系:y=w1x1+w2x2+by=w_1x_1+w_2x_2+by=w1x1+w2x2+b 在模型训练中,我们需要衡量价格预测值与真实值
- 【深度学习基础】什么是卷积?为什么要用卷积?
BIT可达鸭
▶深度学习-计算机视觉神经网络卷积计算机视觉深度学习python
什么是卷积?为什么要用卷积?(一)卷积的原理:1.卷积核:2.卷积层参数:2.1卷积核数:2.2卷积核的大小:2.3步长:2.4填充:3.池化层:3.1最大池化层(maxpooling):3.2均值池化层(averagepooling):(二)卷积的作用:1.减少参数量:
- Coursera吴恩达《深度学习》课程总结(全)
双木的木
吴恩达深度学习笔记AI笔记深度学习神经网络人工智能python
这里有Coursera吴恩达《深度学习》课程的完整学习笔记,一共5门课:《神经网络和深度学习》、《改善深层神经网络》、《结构化机器学习项目》、《卷积神经网络》和《序列模型》,最后附上人工智能领域大师访谈,干货满满。第一门课:神经网络和深度学习基础,介绍一些基本概念。(四周)第二门课:深度学习方面的实践,严密的构建神经网络,如何真正让它表现良好。超参数调整,正则化诊断偏差和方差,高级优化算法,如Mo
- 深度学习简介与应用
jcfszxc
测试专栏深度学习
深度学习简介与应用深度学习是人工智能领域中备受关注的一项技术,通过模拟人脑神经网络的结构,实现了在大规模数据上进行复杂任务的能力。本文将简要介绍深度学习的基本概念,并探讨其在不同领域的应用。深度学习基础深度学习的核心是神经网络,它由多个层次组成,每一层都包含多个神经元。通过训练这些神经网络,系统能够自动学习数据中的模式和特征,从而实现分类、预测等任务。人工神经网络结构输入层:接收数据的第一层,每个
- 深度学习基础知识
湘溶溶
深度学习分割深度学习人工智能
卷积神经网络——图像卷积特征提取卷积核(算子)用来做图像处理时的矩阵,与原图像做运算的参数。卷积层基本参数(卷积核大小,步长【pytorch默认为1】,padding边缘填充)输出尺寸=(输入尺寸-卷积核尺寸+2*padding)/stride+1卷积神经网络的基本结构层输入层:批次通道图像大小卷积层激活函数:加入非线性因素,提高神经网络对模型的表达能力,解决线性模型所不能解决的问题,CNN较为常
- 大模型的学习路线图推荐—多维度深度分析【云驻共创】
一见已难忘
IT分享/测评/交流学习大模型语言模型多维度深度分析
本文背景近年来,随着深度学习技术的迅猛发展,大模型已经成为学术界和工业界的热门话题。大模型具有数亿到数十亿的参数,这使得它们在处理复杂任务时表现得更为出色,但同时也对计算资源和数据量提出了更高的要求。学习大模型的路线图通常需要一系列的基础知识、进阶技能以及实际应用经验。以下是一些相关的背景信息:1.深度学习基础:学习大模型之前,对深度学习的基本概念、神经网络的原理、激活函数、损失函数等基础知识有一
- 深度学习基础之数据操作
丘小羽
pytorch深度学习人工智能
深度学习中最常用的数据是张量,对张量进行操作是进行深度学习的基础。以下是对张量进行的一些操作:首先我们需要先导入相关的张量库torch。元素构造(初始化)使用arange创造一个行向量,也就是0轴(0维)。默认是按顺序创建,从0开始,元素类型默认是整数,当然也可以指定为浮点数。比如:可以使用张量shape属性来访问张量(沿每个轴的长度)的形状(shape)。当然指的是形状,也可能不只是一个维度。我
- Pytorch第2周:深度学习基础 - Day 8-9: 神经网络基础
M.D
深度学习神经网络人工智能pytorchpythontensorflow2
Pytorch第2周:深度学习基础-Day8-9:神经网络基础学习目标:理解神经网络的基础概念。学习如何使用PyTorch的nn模块构建神经网络。学习内容:神经网络基础概念:神经元:构成神经网络的基本单元,模拟生物神经元的功能。层:神经网络的构建块,包括输入层、隐藏层和输出层。激活函数:引入非线性因素,使网络能够学习复杂的模式,如ReLU、Sigmoid、Tanh等。使用PyTorch的nn模块:
- 吴恩达倾情推荐!28张图全解深度学习知识!
深度学习算法与自然语言处理
NLP与大模型机器学习深度学习人工智能自然语言处理机器学习
本文约7500字,建议阅读15分钟本文将从深度学习基础(01-13)、卷积网络(14-22)和循环网络(23-28)三个方面介绍该笔记。吴恩达在推特上展示了一份由TessFerrandez完成的深度学习专项课程图,这套信息图优美地记录了深度学习课程的知识与亮点。因此它不仅仅适合初学者了解深度学习,还适合机器学习从业者和研究者复习基本概念。这不仅仅是一份课程笔记,同时还是一套信息图与备忘录。需要原版
- 【深度学习入门】深度学习基础概念与原理
代码骑士
#深度学习人工智能
*(本篇文章旨在帮助新手了解深度学习的基础概念和原理,不深入讨论算法及核心公式)目录一、深度学习概述1、什么是深度学习?2、深度学习与传统机器学习的区别3、深度学习的应用领域二、深度学习基本原理1、神经网络的基本结构(1)什么是神经网络?(2)神经网络基本结构2、激活函数的作用和选择(1)什么是激活函数?(2)激活函数的作用与选择3、损失函数的定义和选择(1)什么是损失函数(2)损失函数的选择4、
- 深度学习基础数据结构之张量:从一维到多维
m0_61254808
深度学习python深度学习机器学习人工智能
张量在深度学习框架中广泛应用于模型的输入、输出以及中间计算过程。通过支持高维度矩阵运算、记录梯度信息等功能,张量成为实现深度学习算法的关键。张量是一个多维数据容器,可以用来表示各种数据类型,如数值、图像、音频、文本等。本文将介绍一维、二维、三维和四维张量的形象展示、应用以及对学习理解的作用。01一维张量一维张量通常被称为向量,如一维数组[1,4,3,2,5],在数学和线性代数中,向量是指具有大小和
- 深度学习基础知识整理
Do1phln
ML深度学习人工智能
自动编码器Auto-encoders是一种人工神经网络,用于学习未标记数据的有效编码。它由两个部分组成:编码器和解码器。编码器将输入数据转换为一种更紧凑的表示形式,而解码器则将该表示形式转换回原始数据。这种方法可以用于降维,去噪,特征提取和生成模型。自编码器的训练过程是无监督的,因为它不需要标记数据。它的目标是最小化重构误差,即输入数据与解码器输出之间的差异。这可以通过反向传播算法和梯度下降等优化
- 关于旗正规则引擎规则中的上传和下载问题
何必如此
文件下载压缩jsp文件上传
文件的上传下载都是数据流的输入输出,大致流程都是一样的。
一、文件打包下载
1.文件写入压缩包
string mainPath="D:\upload\"; 下载路径
string tmpfileName=jar.zip; &n
- 【Spark九十九】Spark Streaming的batch interval时间内的数据流转源码分析
bit1129
Stream
以如下代码为例(SocketInputDStream):
Spark Streaming从Socket读取数据的代码是在SocketReceiver的receive方法中,撇开异常情况不谈(Receiver有重连机制,restart方法,默认情况下在Receiver挂了之后,间隔两秒钟重新建立Socket连接),读取到的数据通过调用store(textRead)方法进行存储。数据
- spark master web ui 端口8080被占用解决方法
daizj
8080端口占用sparkmaster web ui
spark master web ui 默认端口为8080,当系统有其它程序也在使用该接口时,启动master时也不会报错,spark自己会改用其它端口,自动端口号加1,但为了可以控制到指定的端口,我们可以自行设置,修改方法:
1、cd SPARK_HOME/sbin
2、vi start-master.sh
3、定位到下面部分
- oracle_执行计划_谓词信息和数据获取
周凡杨
oracle执行计划
oracle_执行计划_谓词信息和数据获取(上)
一:简要说明
在查看执行计划的信息中,经常会看到两个谓词filter和access,它们的区别是什么,理解了这两个词对我们解读Oracle的执行计划信息会有所帮助。
简单说,执行计划如果显示是access,就表示这个谓词条件的值将会影响数据的访问路径(表还是索引),而filter表示谓词条件的值并不会影响数据访问路径,只起到
- spring中datasource配置
g21121
dataSource
datasource配置有很多种,我介绍的一种是采用c3p0的,它的百科地址是:
http://baike.baidu.com/view/920062.htm
<!-- spring加载资源文件 -->
<bean name="propertiesConfig"
class="org.springframework.b
- web报表工具FineReport使用中遇到的常见报错及解决办法(三)
老A不折腾
finereportFAQ报表软件
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、repeated column width is largerthan paper width:
这个看这段话应该是很好理解的。比如做的模板页面宽度只能放
- mysql 用户管理
墙头上一根草
linuxmysqluser
1.新建用户 //登录MYSQL@>mysql -u root -p@>密码//创建用户mysql> insert into mysql.user(Host,User,Password) values(‘localhost’,'jeecn’,password(‘jeecn’));//刷新系统权限表mysql>flush privileges;这样就创建了一个名为:
- 关于使用Spring导致c3p0数据库死锁问题
aijuans
springSpring 入门Spring 实例Spring3Spring 教程
这个问题我实在是为整个 springsource 的员工蒙羞
如果大家使用 spring 控制事务,使用 Open Session In View 模式,
com.mchange.v2.resourcepool.TimeoutException: A client timed out while waiting to acquire a resource from com.mchange.
- 百度词库联想
annan211
百度
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>RunJS</title&g
- int数据与byte之间的相互转换实现代码
百合不是茶
位移int转bytebyte转int基本数据类型的实现
在BMP文件和文件压缩时需要用到的int与byte转换,现将理解的贴出来;
主要是要理解;位移等概念 http://baihe747.iteye.com/blog/2078029
int转byte;
byte转int;
/**
* 字节转成int,int转成字节
* @author Administrator
*
- 简单模拟实现数据库连接池
bijian1013
javathreadjava多线程简单模拟实现数据库连接池
简单模拟实现数据库连接池
实例1:
package com.bijian.thread;
public class DB {
//private static final int MAX_COUNT = 10;
private static final DB instance = new DB();
private int count = 0;
private i
- 一种基于Weblogic容器的鉴权设计
bijian1013
javaweblogic
服务器对请求的鉴权可以在请求头中加Authorization之类的key,将用户名、密码保存到此key对应的value中,当然对于用户名、密码这种高机密的信息,应该对其进行加砂加密等,最简单的方法如下:
String vuser_id = "weblogic";
String vuse
- 【RPC框架Hessian二】Hessian 对象序列化和反序列化
bit1129
hessian
任何一个对象从一个JVM传输到另一个JVM,都要经过序列化为二进制数据(或者字符串等其他格式,比如JSON),然后在反序列化为Java对象,这最后都是通过二进制的数据在不同的JVM之间传输(一般是通过Socket和二进制的数据传输),本文定义一个比较符合工作中。
1. 定义三个POJO
Person类
package com.tom.hes
- 【Hadoop十四】Hadoop提供的脚本的功能
bit1129
hadoop
1. hadoop-daemon.sh
1.1 启动HDFS
./hadoop-daemon.sh start namenode
./hadoop-daemon.sh start datanode
通过这种逐步启动的方式,比start-all.sh方式少了一个SecondaryNameNode进程,这不影响Hadoop的使用,其实在 Hadoop2.0中,SecondaryNa
- 中国互联网走在“灰度”上
ronin47
管理 灰度
中国互联网走在“灰度”上(转)
文/孕峰
第一次听说灰度这个词,是任正非说新型管理者所需要的素质。第二次听说是来自马化腾。似乎其他人包括马云也用不同的语言说过类似的意思。
灰度这个词所包含的意义和视野是广远的。要理解这个词,可能同样要用“灰度”的心态。灰度的反面,是规规矩矩,清清楚楚,泾渭分明,严谨条理,是决不妥协,不转弯,认死理。黑白分明不是灰度,像彩虹那样
- java-51-输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
bylijinnan
java
public class PrintMatrixClockwisely {
/**
* Q51.输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
例如:如果输入如下矩阵:
1 2 3 4
5 6 7 8
9
- mongoDB 用户管理
开窍的石头
mongoDB用户管理
1:添加用户
第一次设置用户需要进入admin数据库下设置超级用户(use admin)
db.addUsr({user:'useName',pwd:'111111',roles:[readWrite,dbAdmin]});
第一个参数用户的名字
第二个参数
- [游戏与生活]玩暗黑破坏神3的一些问题
comsci
生活
暗黑破坏神3是有史以来最让人激动的游戏。。。。但是有几个问题需要我们注意
玩这个游戏的时间,每天不要超过一个小时,且每次玩游戏最好在白天
结束游戏之后,最好在太阳下面来晒一下身上的暗黑气息,让自己恢复人的生气
&nb
- java 二维数组如何存入数据库
cuiyadll
java
using System;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Xml;
using System.Xml.Serialization;
using System.IO;
namespace WindowsFormsApplication1
{
- 本地事务和全局事务Local Transaction and Global Transaction(JTA)
darrenzhu
javaspringlocalglobaltransaction
Configuring Spring and JTA without full Java EE
http://spring.io/blog/2011/08/15/configuring-spring-and-jta-without-full-java-ee/
Spring doc -Transaction Management
http://docs.spring.io/spri
- Linux命令之alias - 设置命令的别名,让 Linux 命令更简练
dcj3sjt126com
linuxalias
用途说明
设置命令的别名。在linux系统中如果命令太长又不符合用户的习惯,那么我们可以为它指定一个别名。虽然可以为命令建立“链接”解决长文件名的问 题,但对于带命令行参数的命令,链接就无能为力了。而指定别名则可以解决此类所有问题【1】。常用别名来简化ssh登录【见示例三】,使长命令变短,使常 用的长命令行变短,强制执行命令时询问等。
常用参数
格式:alias
格式:ali
- yii2 restful web服务[格式响应]
dcj3sjt126com
PHPyii2
响应格式
当处理一个 RESTful API 请求时, 一个应用程序通常需要如下步骤 来处理响应格式:
确定可能影响响应格式的各种因素, 例如媒介类型, 语言, 版本, 等等。 这个过程也被称为 content negotiation。
资源对象转换为数组, 如在 Resources 部分中所描述的。 通过 [[yii\rest\Serializer]]
- MongoDB索引调优(2)——[十]
eksliang
mongodbMongoDB索引优化
转载请出自出处:http://eksliang.iteye.com/blog/2178555 一、概述
上一篇文档中也说明了,MongoDB的索引几乎与关系型数据库的索引一模一样,优化关系型数据库的技巧通用适合MongoDB,所有这里只讲MongoDB需要注意的地方 二、索引内嵌文档
可以在嵌套文档的键上建立索引,方式与正常
- 当滑动到顶部和底部时,实现Item的分离效果的ListView
gundumw100
android
拉动ListView,Item之间的间距会变大,释放后恢复原样;
package cn.tangdada.tangbang.widget;
import android.annotation.TargetApi;
import android.content.Context;
import android.content.res.TypedArray;
import andr
- 程序员用HTML5制作的爱心树表白动画
ini
JavaScriptjqueryWebhtml5css
体验效果:http://keleyi.com/keleyi/phtml/html5/31.htmHTML代码如下:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"><head><meta charset="UTF-8" >
<ti
- 预装windows 8 系统GPT模式的ThinkPad T440改装64位 windows 7旗舰版
kakajw
ThinkPad预装改装windows 7windows 8
该教程具有普遍参考性,特别适用于联想的机器,其他品牌机器的处理过程也大同小异。
该教程是个人多次尝试和总结的结果,实用性强,推荐给需要的人!
缘由
小弟最近入手笔记本ThinkPad T440,但是特别不能习惯笔记本出厂预装的Windows 8系统,而且厂商自作聪明地预装了一堆没用的应用软件,消耗不少的系统资源(本本的内存为4G,系统启动完成时,物理内存占用比
- Nginx学习笔记
mcj8089
nginx
一、安装nginx 1、在nginx官方网站下载一个包,下载地址是:
http://nginx.org/download/nginx-1.4.2.tar.gz
2、WinSCP(ftp上传工
- mongodb 聚合查询每天论坛链接点击次数
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 18 */
{
"_id" : ObjectId("5596414cbe4d73a327e50274"),
"msgType" : "text",
"sendTime" : ISODate("2015-07-03T08:01:16.000Z"
- java术语(PO/POJO/VO/BO/DAO/DTO)
Luob.
DAOPOJODTOpoVO BO
PO(persistant object) 持久对象
在o/r 映射的时候出现的概念,如果没有o/r映射,就没有这个概念存在了.通常对应数据模型(数据库),本身还有部分业务逻辑的处理.可以看成是与数据库中的表相映射的java对象.最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合.PO中应该不包含任何对数据库的操作.
VO(value object) 值对象
通
- 算法复杂度
Wuaner
Algorithm
Time Complexity & Big-O:
http://stackoverflow.com/questions/487258/plain-english-explanation-of-big-o
http://bigocheatsheet.com/
http://www.sitepoint.com/time-complexity-algorithms/