假设 E E E是试验, Ω \Omega Ω是他的样本空间,X、Y是定义在样本空间 Ω \Omega Ω的两个变量
( X , Y ) (X,Y) (X,Y)向量、变量
分布函数:
F ( x , y ) = P { X ≤ x , Y ≤ y } F(x,y)=P\{X\leq x,Y\leq y\} F(x,y)=P{X≤x,Y≤y},联合分布函数
一维: F ( x ) = P { X ≤ x } F(x)=P\{X\leq x\} F(x)=P{X≤x}
性质:
① 0 ≤ F ( x ) ≤ 1 0\leq F(x)\leq1 0≤F(x)≤1
② F ( x , y ) F(x,y) F(x,y)是 x x x或 y y y的不减函数, y y y固定, x 1 < x 2 , F ( x 1 , y ) ≤ F ( x 2 , y ) x_1
③ F ( − ∞ , y ) = 0 F(-\infty,y)=0 F(−∞,y)=0
F ( x , − ∞ ) = 0 F(x,-\infty)=0 F(x,−∞)=0
F ( − ∞ , − ∞ ) = 0 F(-\infty,-\infty)=0 F(−∞,−∞)=0
F ( + ∞ , + ∞ ) = 1 F(+\infty,+\infty)=1 F(+∞,+∞)=1
④ F ( x , y ) F(x,y) F(x,y)分别是关于x和y的右连续
⑤ x 1 < x 2 , y 1 < y 2 x_1
P { x 1 < X ≤ x 2 , y 1 < Y ≤ y 2 } = F ( x 2 , y 2 ) − F ( x 2 , y 1 ) − F ( x 1 , y 2 ) + F ( x 1 , y 1 ) P\{x_1
边缘分布:
F X ( x ) = P { X ≤ x } = F { x , + ∞ } = P { X ≤ x , Y < + ∞ } F_X(x)=P\{X\leq x\}=F\{x,+\infty\}=P\{X\leq x,Y<+\infty\} FX(x)=P{X≤x}=F{x,+∞}=P{X≤x,Y<+∞}
F Y ( y ) = P { Y ≤ y } = F { + ∞ , y } = P { X < + ∞ , Y ≤ y } F_Y(y)=P\{Y\leq y\}=F\{+\infty,y\}=P\{X<+\infty,Y\leq y\} FY(y)=P{Y≤y}=F{+∞,y}=P{X<+∞,Y≤y}
X,Y取离散值
分布表:
X\Y | 1 | 2 | 3 |
---|---|---|---|
1 | 0 | 1 2 \frac{1}{2} 21 | 1 8 \frac{1}{8} 81 |
2 | 1 8 \frac{1}{8} 81 | 1 8 \frac{1}{8} 81 | 1 8 \frac{1}{8} 81 |
P { X = x i , Y = y j } = P i j P\{X=x_i,Y=y_j\}=P_{ij} P{X=xi,Y=yj}=Pij
性质
① P i j ≥ 0 P_{ij}\geq 0 Pij≥0
② ∑ i ∑ j P i j = 1 \sum _i\sum_jP_{ij}=1 ∑i∑jPij=1
F ( x , y ) = P { X ≤ x , Y ≤ y } = ∑ x i ≤ x ∑ y i ≤ y P i j F(x,y)=P\{X\leq x,Y\leq y\}=\sum_{x_i\leq x}\sum_{y_i\leq y}P_{ij} F(x,y)=P{X≤x,Y≤y}=∑xi≤x∑yi≤yPij
F ( − 1 , − 2 ) = P { X ≤ − 1 , Y ≤ − 2 } = 0 F(-1,-2)=P\{X\leq -1,Y\leq -2\}=0 F(−1,−2)=P{X≤−1,Y≤−2}=0
F ( 1 , 2 ) = P { X ≤ 1 , Y ≤ 2 } = 1 2 F(1,2)=P\{X\leq 1,Y\leq 2\}=\frac{1}{2} F(1,2)=P{X≤1,Y≤2}=21
F ( 4 , 5 ) = P { X ≤ 4 , Y ≤ 5 } = 1 F(4,5)=P\{X\leq 4,Y\leq 5\}=1 F(4,5)=P{X≤4,Y≤5}=1
F ( 1.5 , 2.6 ) = P { X ≤ 1.5 , Y ≤ 2.6 } = 1 2 F(1.5,2.6)=P\{X\leq 1.5,Y\leq 2.6\}=\frac{1}{2} F(1.5,2.6)=P{X≤1.5,Y≤2.6}=21
边缘分布
对行求和,得X的边缘分布
X | 1 | 2 |
---|---|---|
P | 5 8 \frac{5}{8} 85 | 3 8 \frac{3}{8} 83 |
对列求和,得Y的边缘分布
Y | 1 | 2 | 3 |
---|---|---|---|
P | 1 8 \frac{1}{8} 81 | 5 8 \frac{5}{8} 85 | 1 4 \frac{1}{4} 41 |
①联合分布可唯一确定边缘分布
②边缘分布不能确定联合分布
F ( x , y ) = P { X ≤ x , Y ≤ y } = ∫ − ∞ x ∫ − ∞ y f ( s , t ) d s d t F(x,y)=P\{X\leq x,Y\leq y\}=\int_{-\infty}^{x}\int_{-\infty}^{y}f(s,t)dsdt F(x,y)=P{X≤x,Y≤y}=∫−∞x∫−∞yf(s,t)dsdt
F ( x , y ) F(x,y) F(x,y)分布函数
f ( x , y ) f(x,y) f(x,y)联合密度函数
性质1: f ( x , y ) > 0 f(x,y)>0 f(x,y)>0
性质2: ∫ − ∞ + ∞ ∫ − ∞ + ∞ f ( x , y ) d x d y = 1 \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}f(x,y)dxdy=1 ∫−∞+∞∫−∞+∞f(x,y)dxdy=1
性质3: ∂ 2 F ( x , y ) ∂ x ∂ y = f ( x , y ) \frac{\partial^2F(x,y)}{\partial x\partial y}=f(x,y) ∂x∂y∂2F(x,y)=f(x,y)
性质4:G是XY平面上的一个区域, P { ( X , Y ) ∈ G } = ∬ G f ( x , y ) d x d y P\{(X,Y)\in G\}=\iint_G f(x,y)dxdy P{(X,Y)∈G}=∬Gf(x,y)dxdy
F ( x ) = { C ( x , y ) ∈ G 0 e l s e F(x) = \left\{ \begin{array}{rcl} \ C & (x,y)\in G \\ 0 & else \end{array}\right. F(x)={ C0(x,y)∈Gelse
G : x 2 + y 2 ≤ r 2 G:x^2+y^2\leq r^2 G:x2+y2≤r2
∫ − ∞ + ∞ ∫ − ∞ + ∞ f ( x , y ) d x d y = ∬ G C d x d y = C ∬ G 1 d x d y = C π r 2 = 1 \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}f(x,y)dxdy=\iint_GCdxdy=C\iint_G1dxdy=C\pi r^2=1 ∫−∞+∞∫−∞+∞f(x,y)dxdy=∬GCdxdy=C∬G1dxdy=Cπr2=1
C = 1 π r 2 C=\frac{1}{\pi r^2} C=πr21
例:
F ( x ) = { e − ( x + y ) x > 0 , y > 0 0 e l s e F(x) = \left\{ \begin{array}{rcl} \ e^{-(x+y)} & x>0,y>0 \\ 0 & else \end{array}\right. F(x)={ e−(x+y)0x>0,y>0else
(1)求 X , Y X,Y X,Y的 F ( x , y ) F(x,y) F(x,y)
F ( x , y ) = P { X ≤ x , Y ≤ y } , x > 0 且 y > 0 , F ( x , y ) = ∫ − ∞ x ∫ − ∞ y f ( s , t ) d s d t = ∫ 0 x ∫ 0 y e − s e − t d s d t = ∫ 0 x e − s d s ∫ 0 y e − t d t = ( e − x − 1 ) ( e − y − 1 ) = ( 1 − e − x ) ( 1 − e − y ) F(x,y)=P\{X\leq x,Y\leq y\},x>0且y>0,F(x,y)=\int_{-\infty}^{x}\int_{-\infty}^{y}f(s,t)dsdt\\=\int_0^x\int_0^y e^{-s}e^{-t}dsdt=\int_0^xe^{-s}ds\int_0^ye^{-t}dt=(e^{-x}-1)(e^{-y}-1)=(1-e^{-x})(1-e^{-y}) F(x,y)=P{X≤x,Y≤y},x>0且y>0,F(x,y)=∫−∞x∫−∞yf(s,t)dsdt=∫0x∫0ye−se−tdsdt=∫0xe−sds∫0ye−tdt=(e−x−1)(e−y−1)=(1−e−x)(1−e−y)
(2) 求 P { ( x , y ) ∈ G } 求P\{(x,y)\in G\} 求P{(x,y)∈G}
P { ( x , y ) ∈ G } = ∬ G f ( x , y ) d x d y = ∬ G e − ( x + y ) d x d y = ∫ 0 1 d x ∫ 0 1 − x e − ( x + y ) d y = 1 − 2 e − 1 P\{(x,y)\in G\}=\iint_Gf(x,y)dxdy=\iint_Ge^{-(x+y)}dxdy=\int_{0}^{1}dx\int_{0}^{1-x}e^{-(x+y)}dy=1-2e^{-1} P{(x,y)∈G}=∬Gf(x,y)dxdy=∬Ge−(x+y)dxdy=∫01dx∫01−xe−(x+y)dy=1−2e−1
(3) F X ( x ) , F Y ( y ) F_X(x),F_Y(y) FX(x),FY(y)
F X ( x ) = lim y → + ∞ F ( x , y ) = 1 − e − x , x > 0 F_X(x)=\lim_{y\rightarrow+\infty}F(x,y)=1-e^{-x},x>0 FX(x)=limy→+∞F(x,y)=1−e−x,x>0
F X ( x ) = 0 , x ≤ 0 F_X(x)=0,x\leq0 FX(x)=0,x≤0
F Y ( y ) = lim x → + ∞ F ( x , y ) = 1 − e − y , y > 0 F_Y(y)=\lim_{x\rightarrow+\infty}F(x,y)=1-e^{-y},y>0 FY(y)=limx→+∞F(x,y)=1−e−y,y>0
F Y ( y ) = 0 , y ≤ 0 F_Y(y)=0,y\leq0 FY(y)=0,y≤0
F ( x ) = P { X ≤ x } F(x)=P\{X\leq x\} F(x)=P{X≤x}
F ( x ∣ A ) = P { X ≤ x ∣ A } F(x|A)=P\{X\leq x|A\} F(x∣A)=P{X≤x∣A}
例:
f ( x ) = 1 π ( 1 + x 2 ) f(x)=\frac{1}{\pi(1+x^2)} f(x)=π(1+x2)1,求X>1条件下的条件分布
解:X>1, F ( x ∣ X > 1 ) = P { X ≤ x ∣ X > 1 } = P { X ≤ x , X > 1 } P { X > 1 } F(x|X>1)=P\{X\leq x|X>1\}=\frac{P\{X\leq x,X>1\}}{P\{X>1\}} F(x∣X>1)=P{X≤x∣X>1}=P{X>1}P{X≤x,X>1}
x ≤ 1 x\leq 1 x≤1时, F ( x ∣ X > 1 ) = 0 F(x|X>1)=0 F(x∣X>1)=0
x > 1 时 x>1时 x>1时, P { 1 < X ≤ x } = ∫ 1 x 1 π ( 1 + t 2 ) d t ∫ 1 + ∞ 1 π ( 1 + t 2 ) d t = 1 π a r c t a n t ∣ 1 x 1 π a r c t a n t ∣ 1 + ∞ = 1 π a c r t a n x − 1 4 1 4 P\{1
F ( x ∣ X > 1 ) = { 0 x ≤ 1 4 π a r c t a n x − 1 x > 1 F(x|X>1) = \left\{ \begin{array}{rcl} 0 & x\leq 1 \\ \frac{4}{\pi}arctanx-1 & x>1 \end{array}\right. F(x∣X>1)={0π4arctanx−1x≤1x>1
$ X_1$\ $ X_2$ | 0 | 1 | P i ( 1 ) P_i^{(1)} Pi(1)边缘分布 |
---|---|---|---|
0 | 0.1 | 0.3 | 0.4 |
1 | 0.3 | 0.3 | 0.6 |
P j ( 2 ) P_j^{(2)} Pj(2)边缘分布 | 0.4 | 0.6 |
X 1 = 0 , P { X 2 = 0 ∣ X 1 = 0 } = 0.1 0.4 = 0.25 X_1=0,P\{X_2=0|X_1=0\}=\frac{0.1}{0.4}=0.25 X1=0,P{X2=0∣X1=0}=0.40.1=0.25
X 1 = 0 , P { X 2 = 1 ∣ X 1 = 0 } = 0.3 0.4 = 0.75 X_1=0,P\{X_2=1|X_1=0\}=\frac{0.3}{0.4}=0.75 X1=0,P{X2=1∣X1=0}=0.40.3=0.75
X 1 = 1 , P { X 2 = 0 ∣ X 1 = 1 } = 0.3 0.6 = 0.5 X_1=1,P\{X_2=0|X_1=1\}=\frac{0.3}{0.6}=0.5 X1=1,P{X2=0∣X1=1}=0.60.3=0.5
X 1 = 1 , P { X 2 = 1 ∣ X 1 = 1 } = 0.3 0.6 = 0.5 X_1=1,P\{X_2=1|X_1=1\}=\frac{0.3}{0.6}=0.5 X1=1,P{X2=1∣X1=1}=0.60.3=0.5
X 2 X_2 X2 | 0 | 1 |
---|---|---|
$P{X_2 | X_1=0}$ | 0.25 |
X 2 X_2 X2 | 0 | 1 |
---|---|---|
$P{X_2 | X_1=1}$ | 0.5 |
X 2 = 0 , P { X 1 = 0 ∣ X 2 = 0 } = 0.1 0.4 = 0.25 X_2=0,P\{X_1=0|X_2=0\}=\frac{0.1}{0.4}=0.25 X2=0,P{X1=0∣X2=0}=0.40.1=0.25
X 2 = 0 , P { X 1 = 1 ∣ X 2 = 0 } = 0.3 0.4 = 0.75 X_2=0,P\{X_1=1|X_2=0\}=\frac{0.3}{0.4}=0.75 X2=0,P{X1=1∣X2=0}=0.40.3=0.75
X 2 = 1 , P { X 1 = 0 ∣ X 2 = 1 } = 0.3 0.6 = 0.5 X_2=1,P\{X_1=0|X_2=1\}=\frac{0.3}{0.6}=0.5 X2=1,P{X1=0∣X2=1}=0.60.3=0.5
X 2 = 1 , P { X 1 = 1 ∣ X 1 = 1 } = 0.3 0.6 = 0.5 X_2=1,P\{X_1=1|X_1=1\}=\frac{0.3}{0.6}=0.5 X2=1,P{X1=1∣X1=1}=0.60.3=0.5
X 1 X_1 X1 | 0 | 1 |
---|---|---|
$P{X_1 | X_2=0}$ | 0.25 |
X 1 X_1 X1 | 0 | 1 |
---|---|---|
$P{X_1 | X_2=1}$ | 0.5 |
P { X = x i ∣ Y = y j } = P i j P j ( 2 ) P\{X=x_i|Y=y_j\}=\frac{P_{ij}}{P_j^{(2)}} P{X=xi∣Y=yj}=Pj(2)Pij
定义:(X,Y)是随机变量,f(x,y)是密度函数,边缘密度是 f X ( x ) 、 f Y ( y ) f_X(x)、f_Y(y) fX(x)、fY(y),若 f Y ( y ) > 0 f_Y(y)>0 fY(y)>0
在 Y = y Y=y Y=y的条件下,
F ( x ∣ y ) = ∫ − ∞ x f ( u , y ) f Y ( y ) d u F(x|y)=\int_{-\infty}^x\frac{f(u,y)}{f_Y(y)}du F(x∣y)=∫−∞xfY(y)f(u,y)du, f ( x ∣ y ) = f ( x , y ) f Y ( y ) f(x|y)=\frac{f(x,y)}{f_Y(y)} f(x∣y)=fY(y)f(x,y)
F ( y ∣ x ) = ∫ − ∞ y f ( x , v ) f X ( x ) d v F(y|x)=\int_{-\infty}^y\frac{f(x,v)}{f_X(x)}dv F(y∣x)=∫−∞yfX(x)f(x,v)dv, f ( y ∣ x ) = f ( x , y ) f X ( x ) f(y|x)=\frac{f(x,y)}{f_X(x)} f(y∣x)=fX(x)f(x,y)
例:
f ( x , y ) = 1 π 2 ( 1 + x 2 ) ( 1 + y 2 ) f(x,y)=\frac{1}{\pi^2(1+x^2)(1+y^2)} f(x,y)=π2(1+x2)(1+y2)1, f X ( x ) = 1 π ( 1 + x 2 ) f_X(x)=\frac{1}{\pi(1+x^2)} fX(x)=π(1+x2)1, f Y ( y ) = 1 π ( 1 + y 2 ) f_Y(y)=\frac{1}{\pi(1+y^2)} fY(y)=π(1+y2)1
f ( x ∣ y ) = f ( x , y ) f Y ( y ) = 1 π ( 1 + x 2 ) f(x|y)=\frac{f(x,y)}{f_Y(y)}=\frac{1}{\pi(1+x^2)} f(x∣y)=fY(y)f(x,y)=π(1+x2)1
f ( y ∣ x ) = f ( x , y ) f X ( x ) = 1 π ( 1 + y 2 ) f(y|x)=\frac{f(x,y)}{f_X(x)}=\frac{1}{\pi(1+y^2)} f(y∣x)=fX(x)f(x,y)=π(1+y2)1
例:
f ( x , y ) = { 1 π r 2 x 2 + y 2 ≤ r 2 0 e l s e f(x,y) = \left\{ \begin{array}{rcl} \frac{1}{\pi r^2} & x^2+y^2\leq r^2 \\ 0 & else \end{array}\right. f(x,y)={πr210x2+y2≤r2else
f X ( x ) = { 2 r 2 − x 2 π r 2 ∣ x ∣ ≤ r 0 e l s e f_X(x) = \left\{ \begin{array}{rcl} \frac{2\sqrt{r^2-x^2}}{\pi r^2} & |x|\leq r \\ 0 & else \end{array}\right. fX(x)={πr22r2−x20∣x∣≤relse
f Y ( y ) = { 2 r 2 − y 2 π r 2 ∣ y ∣ ≤ r 0 e l s e f_Y(y) = \left\{ \begin{array}{rcl} \frac{2\sqrt{r^2-y^2}}{\pi r^2} & |y|\leq r \\ 0 & else \end{array}\right. fY(y)={πr22r2−y20∣y∣≤relse
∣ y ∣ < r , f ( x ∣ y ) = f ( x , y ) f Y ( y ) = { − 1 2 r 2 − y 2 − r 2 − y 2 ≤ x ≤ r 2 − y 2 0 e l s e |y|
∣ x ∣ < r , f ( y ∣ x ) = f ( x , y ) f X ( x ) = { − 1 2 r 2 − x 2 − r 2 − x 2 ≤ y ≤ r 2 − x 2 0 e l s e |x|
P { X > 0 ∣ Y = 0 } = ∫ 0 r 1 2 r d x = 0.5 P\{X>0|Y=0\}=\int_0^r\frac{1}{2r}dx=0.5 P{X>0∣Y=0}=∫0r2r1dx=0.5
P { X ≤ x ∣ Y = y } = P { X ≤ x , Y ≤ y } P { Y = y } = lim ϵ → 0 P { X ≤ x , Y ≤ y + ϵ } P { y ≤ Y + ϵ } = lim ϵ → 0 ∫ − ∞ x 1 ϵ ∫ y y + ϵ f ( u , v ) d u d v 1 ϵ ∫ y y + ϵ f Y ( v ) d v = ∫ − ∞ x f ( u , v ) d u d v f Y ( y ) = ∫ − ∞ x f ( u , y ) f Y ( y ) d u P\{X\leq x|Y=y\}=\frac{P\{X\leq x,Y\leq y\}}{P\{Y=y\}}=\lim_{\epsilon\rightarrow 0}\frac{P\{X\leq x,Y\leq y+\epsilon\}}{P\{y\leq Y+\epsilon\}}=\lim_{\epsilon\rightarrow0}\frac{\int^x_{-\infty}\frac{1}{\epsilon}\int_y^{y+\epsilon}f(u,v)dudv}{\frac{1}{\epsilon}\int_y^{y+\epsilon}f_Y(v)dv}=\frac{\int_{-\infty}^{x}f(u,v)dudv}{f_Y(y)} \\ =\int_{-\infty}^x\frac{f(u,y)}{f_Y(y)}du P{X≤x∣Y=y}=P{Y=y}P{X≤x,Y≤y}=limϵ→0P{y≤Y+ϵ}P{X≤x,Y≤y+ϵ}=limϵ→0ϵ1∫yy+ϵfY(v)dv∫−∞xϵ1∫yy+ϵf(u,v)dudv=fY(y)∫−∞xf(u,v)dudv=∫−∞xfY(y)f(u,y)du
积分中值定理: ∫ a b f ( x ) d x = f ( ξ ) ( b − a ) \int_a^bf(x)dx=f(\xi)(b-a) ∫abf(x)dx=f(ξ)(b−a)
扔硬币
f ( x ∣ y ) = f X ( x ) = f ( x , y ) f Y ( y ) f(x|y)=f_X(x)=\frac{f(x,y)}{f_Y(y)} f(x∣y)=fX(x)=fY(y)f(x,y)
f ( x , y ) = f X ( x ) f Y ( y ) f(x,y)=f_X(x)f_Y(y) f(x,y)=fX(x)fY(y)
F ( x , y ) = F X ( x ) F Y ( y ) F(x,y)=F_X(x)F_Y(y) F(x,y)=FX(x)FY(y)
P { X ∈ S x , Y ∈ S y } = P { x ∈ S x } P { Y ∈ S y } P\{X\in S_x,Y\in S_y \}=P\{x\in S_x\}P\{Y\in S_y\} P{X∈Sx,Y∈Sy}=P{x∈Sx}P{Y∈Sy}
P { X = x i , Y = y j } = P { X = x i } P { Y = y j } P\{X=x_i,Y=y_j\}=P\{X=x_i\}P\{Y=y_j\} P{X=xi,Y=yj}=P{X=xi}P{Y=yj}
X\Y | 0 | 1 | |
---|---|---|---|
0 | 0.2 | 0.2 | 0.4 |
1 | 0.2 | 0.4 | 0.6 |
不独立 | 0.4 | 0.6 |
X\Y | 0 | 1 | |
---|---|---|---|
0 | 0.2 | 0.3 | 0.5 |
1 | 0.2 | 0.3 | 0.5 |
独立 | 0.4 | 0.6 |
0.5 × 0.4 = 0.2 0.5\times0.4=0.2 0.5×0.4=0.2 0.5 × 0.6 = 0.3 0.5\times0.6=0.3 0.5×0.6=0.3 独立
2)二维连续型 f ( x , y ) = f X ( x ) f Y ( y ) f(x,y)=f_X(x)f_Y(y) f(x,y)=fX(x)fY(y)
例:
一个经理,8-12时到办公室是均匀分布,秘书到达时间是7-9点,两人到达时间相互独立,求两人到达办公室时间不超过5分钟( 1 12 小 时 \frac{1}{12}小时 121小时)的概率
X是经理 f X ( x ) = { 1 4 8 < x < 12 0 e l s e f_X(x) = \left\{ \begin{array}{rcl} \frac{1}{4} & 8< x <12 \\ 0 & else \end{array}\right. fX(x)={4108<x<12else
Y是秘书 f Y ( y ) = { 1 2 7 < y < 9 0 e l s e f_Y(y) = \left\{ \begin{array}{rcl} \frac{1}{2} & 7< y <9 \\ 0 & else \end{array}\right. fY(y)={2107<y<9else
X,Y相互独立
f ( x , y ) = f X ( x ) f Y ( y ) = { 1 8 8 < x < 12 , 7 < y < 9 0 e l s e f(x,y)=f_X(x)f_Y(y)=\left\{ \begin{array}{rcl} \frac{1}{8} & 8< x <12,7< y <9 \\ 0 & else \end{array}\right. f(x,y)=fX(x)fY(y)={8108<x<12,7<y<9else
P { ∣ X − Y ∣ ≤ 1 12 } = ∬ a f ( x , y ) d x d y = 1 8 ∬ G d x d y = 1 48 P\{|X-Y|\leq \frac{1}{12}\}=\iint_af(x,y)dxdy=\frac{1}{8}\iint_Gdxdy=\frac{1}{48} P{∣X−Y∣≤121}=∬af(x,y)dxdy=81∬Gdxdy=481,阴影部分面积
变量是独立的,由变量构造的函数仍然独立
定理:X、Y独立, g 1 ( X ) , g 2 ( Y ) 也 独 立 g_1(X),g_2(Y)也独立 g1(X),g2(Y)也独立
X 、 Y 独 立 , X 2 , Y 2 , a 1 X + b 1 , a 2 X + b 2 也 独 立 X、Y独立,X^2,Y^2,a_1X+b_1,a_2X+b_2也独立 X、Y独立,X2,Y2,a1X+b1,a2X+b2也独立
(1)二维离散型
X、Y分别是土地的长和宽
X\Y | 4 | 4.2 |
---|---|---|
5 | 0.2 | 0.4 |
5.1 | 0.3 | 0.1 |
Z=XY
Z | 20 | 21 | 20.4 | 21.42 |
---|---|---|---|---|
P | 0.2 | 0.4 | 0.3 | 0.1 |
Z = X 2 − Y Z=X^2-Y Z=X2−Y
Z | 5 2 − 4 5^2-4 52−4 | 5 2 − 4.2 5^2-4.2 52−4.2 | 5. 1 2 − 4 5.1^2-4 5.12−4 | 5. 1 2 − 4.2 5.1^2-4.2 5.12−4.2 |
---|---|---|---|---|
P | 0.2 | 0.4 | 0.3 | 0.1 |
例:
X 1 , X 2 独 立 , 服 从 0 − 1 分 布 , 求 X 1 + X 2 X_1,X_2独立,服从0-1分布,求X_1+X_2 X1,X2独立,服从0−1分布,求X1+X2
X 1 X_1 X1 | 0 | 1 |
---|---|---|
P | 1-p | p |
X 2 X_2 X2 | 0 | 1 |
---|---|---|
P | 1-p | p |
X 1 + X 2 X_1+X_2 X1+X2 | 0 | 1 | 2 |
---|---|---|---|
P | ( 1 − p ) 2 (1-p)^2 (1−p)2 | 2 p ( 1 − p ) 2p(1-p) 2p(1−p) | p 2 p^2 p2 |
X 1 + X 2 X_1+X_2 X1+X2~ B ( 2 , p ) B(2,p) B(2,p), X 1 + X 2 X_1+X_2 X1+X2服从二项分布
例:
X、Y独立且服从 λ 1 、 λ 2 \lambda_1、\lambda_2 λ1、λ2的泊松分布, Z = X + Y , P { X = k } = λ k k ! e − λ Z=X+Y,P\{X=k\}=\frac{\lambda^k}{k!}e^{-\lambda} Z=X+Y,P{X=k}=k!λke−λ,PS:泊松分布是离散型的!!
解: { Z = k } = Σ i = 0 k { X = i , Y = k − i } \{Z=k\}=\Sigma_{i=0}^{k}\{X=i,Y=k-i\} {Z=k}=Σi=0k{X=i,Y=k−i}
P { Z = k } = Σ i = 0 k P { X = i , Y = k − i } = Σ i = 0 k P { X = i } P { Y = k − i } = Σ i = 0 k λ i i ! e − λ 1 λ k − i ( k − i ) ! e − λ 2 ( λ 1 + λ 2 ) k k ! e − ( λ 1 + λ 2 ) P\{Z=k\}=\Sigma_{i=0}^{k}P\{X=i,Y=k-i\}=\Sigma_{i=0}^{k}P\{X=i\}P\{Y=k-i\}\\=\Sigma_{i=0}^{k}\frac{\lambda^i}{i!}e^{-\lambda_1}\frac{\lambda^{k-i}}{(k-i)!}e^{-\lambda_2}\frac{(\lambda_1+\lambda_2)^k}{k!}e^{-(\lambda_1+\lambda_2)} P{Z=k}=Σi=0kP{X=i,Y=k−i}=Σi=0kP{X=i}P{Y=k−i}=Σi=0ki!λie−λ1(k−i)!λk−ie−λ2k!(λ1+λ2)ke−(λ1+λ2)
λ 1 + λ 2 \lambda_1+\lambda_2 λ1+λ2也服从泊松分布
泊松分布具有可加性
变量 ( X , Y ) (X,Y) (X,Y)、联合密度 f ( x , y ) f(x,y) f(x,y), Z = g ( X , Y ) Z=g(X,Y) Z=g(X,Y)
(1)分布: F Z ( ξ ) = P { Z ≤ z } = P { g ( X , Y ) ≤ z } = ∬ D z f ( x , y ) d x d y F_Z(\xi)=P\{Z\leq z\}=P\{g(X,Y)\leq z\}=\iint_{D_{z}}f(x,y)dxdy FZ(ξ)=P{Z≤z}=P{g(X,Y)≤z}=∬Dzf(x,y)dxdy
D z = { ( x , y ) ∣ g ( x , y ) ≤ z } D_{z}=\{(x,y)|g(x,y)\leq z\} Dz={(x,y)∣g(x,y)≤z}
(2)密度: f Z ( z ) f_Z(z) fZ(z)
例:
f ( x , y ) = 1 2 π e − x 2 + y 2 2 , Z = X 2 + Y 2 f(x,y)=\frac{1}{2\pi}e^{-\frac{x^2+y^2}{2}},Z=\sqrt{X^2+Y^2} f(x,y)=2π1e−2x2+y2,Z=X2+Y2
z < 0 时 , F Z ( z ) = P { Z ≤ z } = P { X 2 + Y 2 ≤ z } = 0 z<0时,\\F_Z(z)=P\{Z\leq z\}=P\{\sqrt{X^2+Y^2}\leq z\}=0 z<0时,FZ(z)=P{Z≤z}=P{X2+Y2≤z}=0
z ≥ 0 时 , F Z ( x ) = P { Z ≤ z } = P { X 2 + Y 2 ≤ z } = P { X 2 + Y 2 ≤ z 2 } = ∬ G 1 2 π e − x 2 + y 2 2 d x d y = ∫ 0 2 π d θ ∫ 0 z 1 2 π e − r 2 2 r d r = ∫ 0 2 π d θ ∫ 0 z 1 2 π e − r 2 2 1 2 d r 2 = 1 − e − z 2 2 z\geq 0时,\\F_Z(x)=P\{Z\leq z\}=P\{\sqrt{X^2+Y^2}\leq z\}=P\{X^2+Y^2\leq z^2\}\\=\iint_G\frac{1}{2\pi}e^{-\frac{x^2+y^2}{2}}dxdy\\=\int_0^{2\pi}d\theta\int_0^z\frac{1}{2\pi}e^{-\frac{r^2}{2}}rdr\\=\int_0^{2\pi}d\theta\int_0^z\frac{1}{2\pi}e^{-\frac{r^2}{2}}\frac{1}{2}dr^2\\=1-e^{-\frac{z^2}{2}} z≥0时,FZ(x)=P{Z≤z}=P{X2+Y2≤z}=P{X2+Y2≤z2}=∬G2π1e−2x2+y2dxdy=∫02πdθ∫0z2π1e−2r2rdr=∫02πdθ∫0z2π1e−2r221dr2=1−e−2z2
∴ F Z ( z ) = { 0 z < 0 1 − e − z 2 2 z ≥ 0 , f Z ( z ) = { 0 z < 0 z e − z 2 2 z ≥ 0 \therefore F_Z(z)=\left\{ \begin{array}{rcl} 0 & z <0 \\ 1-e^{-\frac{z^2}{2}} & z\geq 0 \end{array}\right.,f_Z(z)=\left\{ \begin{array}{rcl} 0 & z<0 \\ ze^{-\frac{z^2}{2}} & z\geq 0 \end{array}\right. ∴FZ(z)={01−e−2z2z<0z≥0,fZ(z)={0ze−2z2z<0z≥0
(1)
Z = X + Y , F Z ( z ) = P { Z ≤ z } = P { X + Y ≤ z } = ∬ X + Y ≤ z f ( x , y ) d x d y = ∫ − ∞ + ∞ d x ∫ − ∞ z − x f ( x , y ) d y , 令 x + y = t , 则 y = t − x , d y = d ( t − x ) = d t = ∫ − ∞ + ∞ d x ∫ − ∞ z f ( x , t − x ) d t , X 型 = ∫ − ∞ z [ ∫ − ∞ + ∞ f ( x , t − x ) d x ] d t , Y 型 Z=X+Y,\\F_Z(z)=P\{Z\leq z\}=P\{X+Y\leq z\}=\iint_{X+Y\leq z }f(x,y)dxdy\\=\int_{-\infty}^{+\infty}dx\int_{-\infty}^{z-x}f(x,y)dy,令x+y=t,则y=t-x,dy=d(t-x)=dt\\=\int_{-\infty}^{+\infty}dx\int_{-\infty}^{z}f(x,t-x)dt,X型\\=\int^{z}_{-\infty}[\int_{-\infty}^{+\infty}f(x,t-x)dx]dt,Y型 Z=X+Y,FZ(z)=P{Z≤z}=P{X+Y≤z}=∬X+Y≤zf(x,y)dxdy=∫−∞+∞dx∫−∞z−xf(x,y)dy,令x+y=t,则y=t−x,dy=d(t−x)=dt=∫−∞+∞dx∫−∞zf(x,t−x)dt,X型=∫−∞z[∫−∞+∞f(x,t−x)dx]dt,Y型
变上限积分求导:上限求导 乘 代入上限
f Z ( z ) = ( F Z ( z ) ) ′ = ∫ − ∞ + ∞ f ( x , z − x ) d x = ∫ − ∞ + ∞ f X ( x ) f Y ( z − x ) d x f_Z(z)=(F_Z(z))'=\int_{-\infty}^{+\infty}f(x,z-x)dx=\int_{-\infty}^{+\infty}f_X(x)f_Y(z-x)dx fZ(z)=(FZ(z))′=∫−∞+∞f(x,z−x)dx=∫−∞+∞fX(x)fY(z−x)dx
f Z ( z ) = ∫ − ∞ + ∞ f ( z − y , y ) d y = ∫ − ∞ + ∞ f Y ( y ) f X ( z − y ) d y f_Z(z)=\int_{-\infty}^{+\infty}f(z-y,y)dy=\int_{-\infty}^{+\infty}f_Y(y)f_X(z-y)dy fZ(z)=∫−∞+∞f(z−y,y)dy=∫−∞+∞fY(y)fX(z−y)dy
上面两个公式是==卷积公式==
卷积公式使用条件:① Z = X + Y Z=X+Y Z=X+Y② X 、 Y 独 立 X、Y独立 X、Y独立
(2)
X ∼ N ( 0 , 1 ) , Y ∼ N ( 0 , 1 ) , X 、 Y 独 立 , Z = X + Y X\sim N(0,1),Y\sim N(0,1),X、Y独立,Z=X+Y X∼N(0,1),Y∼N(0,1),X、Y独立,Z=X+Y
Φ Z ( z ) = ∫ − ∞ + ∞ Φ X ( x ) Φ ( z − x ) d x = ∫ − ∞ + ∞ 1 2 π e − x 2 2 1 2 π e − ( z − x ) 2 2 d x = 1 2 π ∫ − ∞ + ∞ e − z 2 4 e − ( x − z 2 ) 2 d x = 1 2 π e − z 2 4 ∫ − ∞ + ∞ e − ( x − z 2 ) 2 d ( x − z 2 ) , 泊 松 积 分 = 1 2 π 2 e x 2 2 ( 2 ) 2 , 正 态 分 布 : ϕ ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 \Phi_Z(z)=\int_{-\infty}^{+\infty}\Phi_X(x)\Phi(z-x)dx=\int_{-\infty}^{+\infty}\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}\frac{1}{\sqrt{2\pi}}e^{-\frac{(z-x)^2}{2}}dx\\=\frac{1}{2\pi}\int_{-\infty}^{+\infty}e^{-\frac{z^2}{4}}e^{-(x-\frac{z}{2})^2}dx\\=\frac{1}{2\pi}e^{-\frac{z^2}{4}}\int_{-\infty}^{+\infty}e^{-(x-\frac z2)^2}d(x-\frac{z}{2}),泊松积分\\=\frac{1}{\sqrt{2\pi}\sqrt2}e^{\frac{x^2}{2(\sqrt2)^2}},\ 正态分布:\phi(x) = \frac{1}{\sqrt{2\pi} \sigma}e^{-\frac{(x-\mu)^2}{2{\sigma}^2}} ΦZ(z)=∫−∞+∞ΦX(x)Φ(z−x)dx=∫−∞+∞2π1e−2x22π1e−2(z−x)2dx=2π1∫−∞+∞e−4z2e−(x−2z)2dx=2π1e−4z2∫−∞+∞e−(x−2z)2d(x−2z),泊松积分=2π21e2(2)2x2, 正态分布:ϕ(x)=2πσ1e−2σ2(x−μ)2
∴ Z ∼ N ( 0 , 2 ) \therefore Z\sim N(0,2) ∴Z∼N(0,2)
若 X ∼ N ( μ 1 , σ 1 2 ) , Y ∼ N ( μ 2 , σ 2 2 ) , X 、 Y 独 立 , 则 X + Y ∼ N ( μ 1 + μ 2 , σ 1 2 + σ 2 2 ) 若X\sim N(\mu_1,\sigma_1^2),Y\sim N(\mu_2,\sigma_2^2),X、Y独立,则X+Y\sim N(\mu_1+\mu_2,\sigma_1^2+\sigma_2^2) 若X∼N(μ1,σ12),Y∼N(μ2,σ22),X、Y独立,则X+Y∼N(μ1+μ2,σ12+σ22)
M = m a x { X , Y } , N = m i n { X , Y } M=max\{X,Y\},N=min\{X,Y\} M=max{X,Y},N=min{X,Y}
{ m a x { X , Y } ≤ z } = { X ≤ z , Y ≤ z } \{max\{X,Y\}\leq z\}=\{X\leq z,Y\leq z\} {max{X,Y}≤z}={X≤z,Y≤z}
F M ( z ) = P { M ≤ z } = P { X ≤ z , Y ≤ z } = P { X ≤ z } P { Y ≤ z } = F X ( z ) F Y ( z ) F_M(z)=P\{M\leq z\}=P\{X\leq z,Y\leq z\}=P\{X\leq z\}P\{Y\leq z\}=F_X(z)F_Y(z) FM(z)=P{M≤z}=P{X≤z,Y≤z}=P{X≤z}P{Y≤z}=FX(z)FY(z)
F N ( z ) = P { N ≤ z } = 1 − P { N > z } = 1 − P { X > z , Y > z } = 1 − P { X > z } P { Y > z } = 1 − ( 1 − P { X ≤ z } ) ( 1 − P { Y ≤ z } ) = 1 − ( 1 − F X ( z ) ) ( 1 − F Y ( z ) ) F_N(z)=P\{N\leq z\}=1-P\{N>z\}=1-P\{X>z,Y>z\}\\=1-P\{X>z\}P\{Y>z\}\\=1-(1-P\{X\leq z\})(1-P\{Y\leq z\})\\=1-(1-F_X(z))(1-F_Y(z)) FN(z)=P{N≤z}=1−P{N>z}=1−P{X>z,Y>z}=1−P{X>z}P{Y>z}=1−(1−P{X≤z})(1−P{Y≤z})=1−(1−FX(z))(1−FY(z))
X 、 Y 独 立 , X 在 [ 0 , 1 ] 上 为 均 匀 分 布 , Y 是 λ = 3 的 指 数 分 布 , M = m a x { X , Y } , N = m i n { X , Y } X、Y独立,X在[0,1]上为均匀分布,Y是\lambda=3的指数分布,M=max\{X,Y\},N=min\{X,Y\} X、Y独立,X在[0,1]上为均匀分布,Y是λ=3的指数分布,M=max{X,Y},N=min{X,Y}
f X ( x ) = { 1 0 ≤ x ≤ 1 0 e l s e , f Y ( y ) = { 3 e − 3 y y > 0 0 y ≤ 0 f_X(x)=\left\{ \begin{array}{rcl} 1 & 0\leq x\leq 1 \\ 0 & else \end{array}\right.,f_Y(y)=\left\{ \begin{array}{rcl} 3e^{-3y} & y>0 \\ 0 & y\leq 0 \end{array}\right. fX(x)={100≤x≤1else,fY(y)={3e−3y0y>0y≤0
F X ( x ) = { 0 x < 0 x 0 < x < 1 1 x ≥ 1 , F Y ( y ) = { 1 − e − 3 y y > 0 0 y ≤ 0 F_X(x)=\left\{ \begin{array}{rcl} 0 & x<0 \\ x & 0
M = m a x { X , Y } , F M ( z ) = { 0 z < 0 z ( 1 − e − 3 z ) 0 ≤ z < 1 1 − e − 3 z z ≥ 1 M=max\{X,Y\},F_M(z)=\left\{ \begin{array}{rcl} 0 & z<0 \\ z(1-e^{-3z}) & 0\leq z<1 \\1-e^{-3z} & z\geq 1 \end{array}\right. M=max{X,Y},FM(z)=⎩⎨⎧0z(1−e−3z)1−e−3zz<00≤z<1z≥1
f M ( z ) = { 0 z < 0 z ( 1 − e − 3 z + 3 z e − 3 z ) 0 ≤ z < 1 3 e − 3 z z ≥ 1 f_M(z)=\left\{ \begin{array}{rcl} 0 & z<0 \\ z(1-e^{-3z}+3ze^{-3z}) & 0\leq z<1 \\3e^{-3z} & z\geq 1 \end{array}\right. fM(z)=⎩⎨⎧0z(1−e−3z+3ze−3z)3e−3zz<00≤z<1z≥1
N = m i n { X , Y } , F N ( z ) = { 0 z < 0 1 − ( 1 − z ) e − 3 z 0 ≤ z < 1 1 z ≥ 1 N=min\{X,Y\},F_N(z)=\left\{ \begin{array}{rcl} 0 & z<0 \\ 1-(1-z)e^{-3z} & 0\leq z<1 \\1 & z\geq 1 \end{array}\right. N=min{X,Y},FN(z)=⎩⎨⎧01−(1−z)e−3z1z<00≤z<1z≥1
f N ( z ) = { 4 e − 3 z − 3 z e 3 z 0 ≤ z < 1 0 e l s e f_N(z)=\left\{ \begin{array}{rcl} 4e^{-3z}-3ze^{3z} & 0\leq z<1 \\ 0 & else \end{array}\right. fN(z)={4e−3z−3ze3z00≤z<1else