定义2.1: Ω \Omega Ω是样本空间, X = X ( ω ) X=X(\omega) X=X(ω)是该样本空间上的实值函数(定义域是样本空间), X X X称为随机变量,一般用 X , Y , Z , ξ , η , ς X,Y,Z,\xi,\eta,\varsigma X,Y,Z,ξ,η,ς表示
{ ω ∣ X ( ω ) = a } \{\omega|X(\omega)=a\} {ω∣X(ω)=a}事件: { X = a } \{X=a\} {X=a}事件
离散型:有限个/无限可列个
非离散型:主要研究连续型
X X X的所有取值 x k ( k = 1 , 2 , ⋯ ) x_k(k=1,2,\cdots) xk(k=1,2,⋯)(可列个)
P ( X = x k ) = P k P(X=x_k)=P_k P(X=xk)=Pk 概率函数/概率分布
概率分布表:
X 1 0 P 1 2 1 2 \begin{array}{c|c|c} X & 1 & 0 \\ \hline P & \frac{1}{2} & \frac{1}{2} \\ \end{array} XP121021
定义:非负可积函数 f ( x ) f(x) f(x), f ( x ) ≥ 0 , a ≤ b f(x)\geq 0,a\leq b f(x)≥0,a≤b
P ( a < x ≤ b ) = ∫ a b f ( x ) d x \displaystyle P(a
x x x:连续型随机变量
f ( x ) f(x) f(x): x x x的概率分布密度函数
记作 X ∼ f ( x ) X\sim f(x) X∼f(x)
性质:
连续型 不考虑端点
P ( a ≤ x ≤ b ) = P ( a < x ≤ b ) = P ( a ≤ x < b ) = P ( a < x < b ) P(a\leq x\leq b)=P(a
概率为0的事件未必是不可能事件
概率为1的事件未必是必然事件
X X X取 x x x附近值的概率大小
lim Δ x → 0 P ( x < X < x + Δ x ) Δ x = ∫ x x + Δ x f ( x ) d x Δ x \displaystyle\lim\limits_{\Delta x\to 0} \frac{P(x
P ( x < X < x + Δ x ) ≈ f ( x ) Δ x P(x
定义: F ( x ) = P ( X ≤ x ) F(x)=P(X\leq x) F(x)=P(X≤x)(普通的实函数)
X X X取值不超过 x x x的概率
x ∈ ( − ∞ , + ∞ ) , F ( x ) ∈ [ 0 , 1 ] x\in(-\infin,+\infin),F(x)\in[0,1] x∈(−∞,+∞),F(x)∈[0,1]
性质:
公式:
P ( X ≤ a ) = F ( a ) P(X\leq a)=F(a) P(X≤a)=F(a)
P ( X > a ) = 1 − F ( a ) P(X>a)=1-F(a) P(X>a)=1−F(a)
P ( a < X ≤ b ) = P ( X ≤ b ) − P ( X ≤ a ) = F ( b ) − F ( a ) P(a
P ( X = a ) = F ( a ) − F ( a − 0 ) P(X=a)=F(a)-F(a-0) P(X=a)=F(a)−F(a−0)
P ( a ≤ X ≤ b ) = F ( b ) − F ( a − 0 ) P(a\leq X\leq b)=F(b)-F(a-0) P(a≤X≤b)=F(b)−F(a−0)
P ( X < a ) = F ( a − 0 ) P(XP(X<a)=F(a−0)
P ( X ≥ a ) = 1 − F ( a − 0 ) P(X\geq a)=1-F(a-0) P(X≥a)=1−F(a−0)
【例1】
F ( x ) = { a − e − λ x x > 0 0 x ≤ 0 F(x)=\begin{cases} a-e^{-\lambda x} & x>0 \\ 0 & x\leq 0 \end{cases} F(x)={a−e−λx0x>0x≤0
λ > 0 \lambda>0 λ>0,求 a a a
解:
F ( − ∞ ) = 0 = 0 F(-\infin)=0=0 F(−∞)=0=0
F ( + ∞ ) = lim x → + ∞ ( a − 1 e λ x ) = a = 1 F(+\infin)=\displaystyle\lim\limits_{x\to+\infin}(a-\frac{1}{e^{\lambda x}})=a=1 F(+∞)=x→+∞lim(a−eλx1)=a=1
故 a = 1 a=1 a=1
【例2】
离散型随机变量概率分布表如下:
X − 1 2 3 P 1 2 1 3 1 6 \begin{array}{c|c} X & -1 & 2 & 3 \\ \hline P & \frac{1}{2} & \frac{1}{3} & \frac{1}{6} \\ \end{array} XP−121231361
求分布函数
解:
F ( x ) = P ( X ≤ x ) , x ∈ ( − ∞ , + ∞ ) F(x)=P(X\leq x), x\in(-\infin,+\infin) F(x)=P(X≤x),x∈(−∞,+∞)
F ( x ) = { 0 x < − 1 1 / 2 − 1 ≤ x < 2 5 / 6 2 ≤ x < 3 1 3 ≤ x F(x)=\begin{cases} 0 & x<-1 \\ 1/2 & -1\leq x<2 \\ 5/6 & 2\leq x<3 \\ 1 & 3\leq x \end{cases} F(x)=⎩⎪⎪⎪⎨⎪⎪⎪⎧01/25/61x<−1−1≤x<22≤x<33≤x
分布函数 → \rarr →概率函数
间断点 x k x_k xk是 X X X的取值
P ( X = x k ) = F ( x k ) − F ( x k − 0 ) P(X=x_k)=F(x_k)-F(x_k-0) P(X=xk)=F(xk)−F(xk−0)
F ( x ) = P ( X ≥ x ) = ∫ − ∞ x f ( t ) d t F(x)=P(X\geq x)=\displaystyle\int_{-\infin}^xf(t)dt F(x)=P(X≥x)=∫−∞xf(t)dt
【例3】
f ( x ) = 1 π ( 1 + x 2 ) \displaystyle f(x)=\frac{1}{\pi(1+x^2)} f(x)=π(1+x2)1,求分布函数
解:
F ( x ) = ∫ − ∞ x 1 π ( 1 + x 2 ) d t = 1 π arctan t + 1 2 \displaystyle F(x)=\int_{-\infin}^x\frac{1}{\pi(1+x^2)}dt=\frac{1}{\pi}\arctan t +\frac{1}{2} F(x)=∫−∞xπ(1+x2)1dt=π1arctant+21
【例4】
f ( x ) = { − 1 2 x + 1 0 ≤ x ≤ 2 0 其 他 f(x)=\begin{cases} \displaystyle -\frac{1}{2}x+1 & 0\leq x\leq 2 \\ 0 & 其他 \end{cases} f(x)=⎩⎨⎧−21x+100≤x≤2其他
解:
【例5】
F ( x ) = { 0 x < 0 A x 2 0 ≤ x < 1 1 1 ≤ x F(x)=\begin{cases} 0 & x<0 \\ Ax^2 & 0\leq x<1 \\ 1 & 1\leq x \end{cases} F(x)=⎩⎪⎨⎪⎧0Ax21x<00≤x<11≤x,求:1. A A A;2. f ( x ) f(x) f(x);3. P ( 0.3 < x < 0.7 ) P(0.3
解:
求 A A A
F ( − ∞ ) = lim x → − ∞ F ( x ) = 0 F(-\infin)=\lim\limits_{x\to-\infin}F(x)=0 F(−∞)=x→−∞limF(x)=0
F ( + ∞ ) = lim x → + ∞ F ( x ) = 1 F(+\infin)=\lim\limits_{x\to+\infin}F(x)=1 F(+∞)=x→+∞limF(x)=1
lim x → 0 + F ( x ) = lim x → 0 + A x 2 = 0 = F ( 0 ) = 0 \lim\limits_{x\to0^+}F(x)=\lim\limits_{x\to0^+}Ax^2=0=F(0)=0 x→0+limF(x)=x→0+limAx2=0=F(0)=0
lim x → 1 − F ( x ) = lim x → 1 − A x 2 = A = F ( 1 ) = 1 \lim\limits_{x\to1^-}F(x)=\lim\limits_{x\to1^-}Ax^2=A=F(1)=1 x→1−limF(x)=x→1−limAx2=A=F(1)=1
故 A = 1 A=1 A=1
f ( x ) = { 2 x 0 ≤ x < 1 0 其 他 f(x)=\begin{cases} 2x & 0\leq x<1\\ 0 & 其他 \end{cases} f(x)={2x00≤x<1其他
P ( 0.3 < x < 0.7 ) = F ( 0.7 ) − F ( 0.3 ) = 0.49 − 0.09 = 0.4 P(0.3
P ( 0.3 < x < 0.7 ) = ∫ 0.3 0.7 f ( x ) d x = ∫ 0.3 0.7 2 x d x \displaystyle P(0.3
X 1 0 P p 1 − p \begin{array}{c|c} X & 1 & 0 \\ \hline P & p & 1-p \\ \end{array} XP1p01−p
P ( X = k ) = p k ( 1 − p ) 1 − k P(X=k)=p^k(1-p)^{1-k} P(X=k)=pk(1−p)1−k
(二项分布的特例)
P ( A ) = p P(A)=p P(A)=p
第 k k k次首次发生,前 k − 1 k-1 k−1次未发生
P ( X = k ) = ( 1 − p ) k − 1 p k , k = 0 , 1 , 2 , ⋯ P(X=k)=(1-p)^{k-1}p^k,k=0,1,2,\cdots P(X=k)=(1−p)k−1pk,k=0,1,2,⋯
X ∼ G ( p ) X\sim G(p) X∼G(p)
P ( A ) = p P(A)=p P(A)=p
n n n次试验,发生了 k k k次
P ( X = k ) = C n k p k ( 1 − p ) n − k , k = 0 , 1 , 2 , ⋯ , n P(X=k)=C_n^kp^k(1-p)^{n-k}, k=0,1,2,\cdots,n P(X=k)=Cnkpk(1−p)n−k,k=0,1,2,⋯,n
X ∼ B ( n , p ) X\sim B(n,p) X∼B(n,p)
n = 1 n=1 n=1时, P ( X = k ) = C 1 k p k ( 1 − p ) 1 − k , k = 0 , 1 P(X=k)=C_1^kp^k(1-p)^{1-k},k=0,1 P(X=k)=C1kpk(1−p)1−k,k=0,1(0-1分布)
最可能值:
P ( X = k ) = λ k k ! e − λ , k = 1 , 2 , 3 , ⋯ \displaystyle P(X=k)=\frac{\lambda^k}{k!}e^{-\lambda},k=1,2,3,\cdots P(X=k)=k!λke−λ,k=1,2,3,⋯
λ > 0 \lambda>0 λ>0
X ∼ P ( λ ) X\sim P(\lambda) X∼P(λ)
电台收到的呼叫次数,公用设施(候车,收银台,一员挂号处)
计算方式:查表
二项分布可以用泊松分布近似
条件: n n n较大, p p p较小, n p np np适中( n ≥ 100 , n p ≤ 10 n\geq100,np\leq10 n≥100,np≤10)
例题
【例5】电话台用户呼叫次数 X ∼ P ( 3 ) X\sim P(3) X∼P(3),写出 X X X的概率函数,以及一分钟呼叫不超过5次的概率
解:
X ∼ P ( 3 ) X\sim P(3) X∼P(3)
λ = 3 \lambda=3 λ=3
P ( X = k ) = λ k k ! e − λ = 3 k k ! e − 3 , k = 0 , 1 , 2 , ⋯ \displaystyle P(X=k)=\frac{\lambda^k}{k!}e^{-\lambda}=\frac{3^k}{k!}e^{-3},k=0,1,2,\cdots P(X=k)=k!λke−λ=k!3ke−3,k=0,1,2,⋯
P ( x ≤ 5 ) = ∑ k = 0 5 P ( X = k ) = 0.916 P(x\leq5)=\displaystyle\sum_{k=0}^5P(X=k)=0.916 P(x≤5)=k=0∑5P(X=k)=0.916
【例6】证券营业部有1000个账户,每户存了10万元,每个账户来提20%的概率时0.006,问应该准备多少现金,才能保证95%以上的概率满足提款要求
解:
10 × 0.2 = 2 10\times0.2=2 10×0.2=2(万元)
设: X X X:提钱的用户数, X ∼ B ( 1000 , 0.006 ) X\sim B(1000,0.006) X∼B(1000,0.006),准备现金 x x x元
P ( 2 X ≤ x ) ≥ 0.95 P(2X\leq x)\geq 0.95 P(2X≤x)≥0.95
P ( X ≤ x 2 ) ≥ 0.95 \displaystyle P(X\leq \frac{x}{2})\geq 0.95 P(X≤2x)≥0.95
n = 1000 , p = 0.006 , n p = 6 n=1000,p=0.006,np=6 n=1000,p=0.006,np=6
⇒ λ = 6 \Rarr\lambda=6 ⇒λ=6
∑ k = 0 x 2 6 k k ! e − 6 ≥ 0.95 , x 2 ≥ 10 , x ≥ 20 \displaystyle\sum_{k=0}^{\frac{x}{2}}\frac{6^k}{k!}e^{-6} \geq0.95,\displaystyle\frac{x}{2}\geq10,x\geq20 k=0∑2xk!6ke−6≥0.95,2x≥10,x≥20
x = 20 x=20 x=20
【例7】
某种非传染病发病率为0.001,某单位有5000人,至少两人的病的概率?
解:
X X X:得病的人数, X ∼ B ( 5000 , 0.001 ) X\sim B(5000,0.001) X∼B(5000,0.001)
P ( X ≥ 2 ) = 1 − P ( X = 0 ) − P ( X = 1 ) P(X\geq2)=1-P(X=0)-P(X=1) P(X≥2)=1−P(X=0)−P(X=1)
n = 5000 , p = 0.001 , n p = 5 n=5000,p=0.001,np=5 n=5000,p=0.001,np=5
⇒ λ = 5 \Rarr\lambda=5 ⇒λ=5
P ( X ≥ 2 ) = 1 − 0.006738 − 0.03369 = 0.959572 P(X\geq2)=1-0.006738-0.03369=0.959572 P(X≥2)=1−0.006738−0.03369=0.959572
100学生,男生60人,女生40人,任取10人, X X X:取到的男生人数
P ( X = k ) = C 60 k C 40 10 − k C 100 10 \displaystyle P(X=k)=\frac{C_{60}^kC_{40}^{10-k}}{C_{100}^{10}} P(X=k)=C10010C60kC4010−k
定义: N N N个元素, N 1 N_1 N1个属于第一类, N 2 N_2 N2个属于第二类,取 n n n个, X X X: n n n个中属于第一类的个数
P ( X = k ) = C N 1 k C N 2 n − k C N n , k = 0 , 1 , 2 , ⋯ , min { n , N 1 } \displaystyle P(X=k)=\frac{C_{N_1}^kC_{N_2}^{n-k}}{C_N^n},k=0,1,2,\cdots,\min\{n,N_1\} P(X=k)=CNnCN1kCN2n−k,k=0,1,2,⋯,min{n,N1}
超几何分布可以用来描述不放回抽样的实验
当 N N N很大, n n n相对 N N N很小时, p = M N p=\frac{M}{N} p=NM改变甚微,不放回抽样可以看作放回抽样
P ( X = k ) = C M k C N − M n − k C N n ≈ C n k p k ( 1 − p ) n − k \displaystyle P(X=k)=\frac{C_M^kC_{N-M}^{n-k}}{C_N^n}\approx C_n^kp^k(1-p)^{n-k} P(X=k)=CNnCMkCN−Mn−k≈Cnkpk(1−p)n−k
例题
【例9】
10000粒种子,发芽率99%,取200粒至多1粒不发芽的概率?
解:
10000 × ( 1 − 99 % ) = 100 10000\times(1-99\%)=100 10000×(1−99%)=100(粒)
发芽9900粒,不发芽100粒
N 1 = 100 , N 2 = 9900 , n = 200 N_1=100,N_2=9900,n=200 N1=100,N2=9900,n=200
P ( X ≤ 1 ) = P ( X = 0 ) + P ( X = 1 ) = C 100 0 C 9900 200 C 10000 200 + C 100 1 C 9900 199 C 10000 200 \displaystyle P(X\leq1)=P(X=0)+P(X=1)=\frac{C_{100}^0C_{9900}^{200}}{C_{10000}^{200}}+\frac{C_{100}^1C_{9900}^{199}}{C_{10000}^{200}} P(X≤1)=P(X=0)+P(X=1)=C10000200C1000C9900200+C10000200C1001C9900199
用二项分布近似:
n = 200 , p = 0.01 n=200,p=0.01 n=200,p=0.01
P ( X ≤ 1 ) = C 200 0 0.0 1 0 0.9 9 200 + C 200 1 0.0 1 1 0.9 9 199 P(X\leq1)=C_{200}^00.01^00.99^{200}+C_{200}^10.01^10.99^{199} P(X≤1)=C20000.0100.99200+C20010.0110.99199
用泊松分布近似:
n = 200 ≥ 100 n=200\geq 100 n=200≥100较大, p = 0.01 p=0.01 p=0.01较小, n p = 2 ≤ 10 np=2\leq 10 np=2≤10大小适中
λ = 2 \lambda=2 λ=2
k = 1 , 0 k=1,0 k=1,0
查表: P = 0.1353 + 0.2707 = 0.406 P=0.1353+0.2707=0.406 P=0.1353+0.2707=0.406
f ( x ) = { 1 b − a a ≤ x ≤ b 0 e l s e f(x)=\begin{cases} \displaystyle\frac{1}{b-a} & a\leq x\leq b\\ 0 & else \end{cases} f(x)=⎩⎨⎧b−a10a≤x≤belse
X ∼ U [ a , b ] X\sim U[a,b] X∼U[a,b]
分布函数:
F ( x ) = ∫ − ∞ x f ( t ) d t = { 0 x < a x − a b − a a ≤ x < b 1 x ≤ b F(x)=\displaystyle\int_{-\infin}^xf(t)dt=\begin{cases} 0 & xF(x)=∫−∞xf(t)dt=⎩⎪⎪⎨⎪⎪⎧0b−ax−a1x<aa≤x<bx≤b
X ∼ [ a , b ] , [ c , d ] ⊂ [ a , b ] X\sim[a,b],[c,d]\subset[a,b] X∼[a,b],[c,d]⊂[a,b]
P ( c ≤ x ≤ d ) = ∫ c d 1 b − a d t = d − c b − a P(c\leq x\leq d)=\displaystyle\int_c^d\frac{1}{b-a}dt=\frac{d-c}{b-a} P(c≤x≤d)=∫cdb−a1dt=b−ad−c
落在 [ a , b ] [a,b] [a,b]上任意子区间的概率与子区间的长度成正比,与子区间的位置无关
f ( x ) = { λ e − λ x x > 0 0 x ≤ 0 f(x)=\begin{cases} \lambda e^{-\lambda x} & x>0\\ 0 & x\leq0 \end{cases} f(x)={λe−λx0x>0x≤0
λ > 0 , X ∼ E x p ( λ ) \lambda>0,X\sim E_{xp}(\lambda) λ>0,X∼Exp(λ)
F ( x ) = { 1 − e − λ X x > 0 0 x ≤ 0 F(x)=\begin{cases} 1-e^{-\lambda X} & x>0\\ 0 & x\leq0 \end{cases} F(x)={1−e−λX0x>0x≤0
服务系统的服务时间,电话的通话时间,消耗性产品的寿命
密度函数:
ϕ ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 , − ∞ < x < + ∞ \phi(x)=\displaystyle\frac{1}{\sqrt{2\pi}\sigma}e^{-\displaystyle\frac{(x-\mu)^2}{2\sigma^2}},-\infin
记作 X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) X∼N(μ,σ2)
已知 ∫ − ∞ + ∞ e − x 2 d x \displaystyle\int_{-\infin}^{+\infin}e^{-x^2}dx ∫−∞+∞e−x2dx(高数知识)
则有:
∫ − ∞ + ∞ Φ ( x ) d x = ∫ − ∞ + ∞ 1 2 π σ e − ( x − μ ) 2 2 σ 2 d x = 1 2 π σ ∫ − ∞ + ∞ e − ( x − μ ) 2 2 σ 2 d x = 2 σ 2 π σ ∫ − ∞ + ∞ e − ( x − μ 2 σ ) 2 d ( x − μ 2 σ ) = 1 π π = 1 \displaystyle\int_{-\infin}^{+\infin}\Phi(x)dx\\ =\displaystyle\int_{-\infin}^{+\infin}\displaystyle\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}dx\\ =\displaystyle\frac{1}{\sqrt{2\pi}\sigma}\displaystyle\int_{-\infin}^{+\infin}e^{-\frac{(x-\mu)^2}{2\sigma^2}}dx\\ =\displaystyle\frac{\sqrt{2}\sigma}{\sqrt{2\pi}\sigma}\displaystyle\int_{-\infin}^{+\infin}e^{-(\frac{x-\mu}{\sqrt{2}\sigma})^2}d(\frac{x-\mu}{\sqrt{2}\sigma})\\ =\frac{1}{\sqrt{\pi}}\sqrt{\pi}\\ =1 ∫−∞+∞Φ(x)dx=∫−∞+∞2πσ1e−2σ2(x−μ)2dx=2πσ1∫−∞+∞e−2σ2(x−μ)2dx=2πσ2σ∫−∞+∞e−(2σx−μ)2d(2σx−μ)=π1π=1
分布函数:
Φ ( x ) = 1 2 π σ ∫ − ∞ x e − ( x − μ ) 2 2 σ 2 d t \Phi(x)=\displaystyle\frac{1}{\sqrt{2\pi}\sigma}\int_{-\infin}^xe^{-\frac{(x-\mu)^2}{2\sigma^2}}dt Φ(x)=2πσ1∫−∞xe−2σ2(x−μ)2dt
性质:
标准正态分布:
μ = 0 , σ = 1 \mu=0,\sigma=1 μ=0,σ=1
ϕ 0 ( x ) = 1 2 π e − x 2 2 , − ∞ < x < + ∞ \phi_0(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}},-\infin
Φ 0 ( x ) = 1 2 π ∫ − ∞ x e − t 2 2 d t \Phi_0(x)=\frac{1}{\sqrt{2\pi}}\displaystyle\int_{-\infin}^xe^{-\frac{t^2}{2}}dt Φ0(x)=2π1∫−∞xe−2t2dt
性质:
y y y轴为对称轴(偶函数)
ϕ 0 ( x ) = ϕ 0 ( − x ) \phi_0(x)=\phi_0(-x) ϕ0(x)=ϕ0(−x)
Φ 0 ( − x ) = 1 − Φ 0 ( x ) \Phi_0(-x)=1-\Phi_0(x) Φ0(−x)=1−Φ0(x)
如果一个指标的影响因素有很多,每个因素起的作用都不太大,则这个指标服从正态分布
计算:
{ 0 ≤ x ≤ 5 查 表 x ≥ 5 ϕ 0 ( x ) = 0 , Φ 0 ( x ) = 1 x ≤ − 5 ϕ 0 ( x ) = 0 , Φ 0 ( x ) = 0 − 5 ≤ x ≤ 0 ϕ 0 ( x ) = ϕ 0 ( − x ) , Φ 0 ( − x ) = 1 − Φ 0 ( x ) \begin{cases} 0\leq x\leq5 & 查表\\ x\geq5 & \phi_0(x)=0,\Phi_0(x)=1\\ x\leq-5 & \phi_0(x)=0,\Phi_0(x)=0\\ -5\leq x\leq0 & \phi_0(x)=\phi_0(-x),\Phi_0(-x)=1-\Phi_0(x) \end{cases} ⎩⎪⎪⎪⎨⎪⎪⎪⎧0≤x≤5x≥5x≤−5−5≤x≤0查表ϕ0(x)=0,Φ0(x)=1ϕ0(x)=0,Φ0(x)=0ϕ0(x)=ϕ0(−x),Φ0(−x)=1−Φ0(x)
一般正态分布向标准正态分布转化:
ϕ ( x ) = 1 σ ϕ 0 ( x − μ σ ) \phi(x)=\displaystyle\frac{1}{\sigma}\phi_0(\frac{x-\mu}{\sigma}) ϕ(x)=σ1ϕ0(σx−μ)
Φ ( x ) = Φ 0 ( x − μ σ ) \Phi(x)=\displaystyle\Phi_0(\frac{x-\mu}{\sigma}) Φ(x)=Φ0(σx−μ)
X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) X∼N(μ,σ2)
P ( ∣ X − μ ∣ < σ ) = 0.6826 P(|X-\mu|<\sigma)=0.6826 P(∣X−μ∣<σ)=0.6826
P ( ∣ X − μ ∣ < 2 σ ) = 0.9544 P(|X-\mu|<2\sigma)=0.9544 P(∣X−μ∣<2σ)=0.9544
P ( ∣ X − μ ∣ < 3 σ ) = 0.9974 P(|X-\mu|<3\sigma)=0.9974 P(∣X−μ∣<3σ)=0.9974
3 σ 3\sigma 3σ准则
如果一个系统设计时服从正态分布,在检验时不符合 3 σ 3\sigma 3σ准则,则不合格
X ∼ ( 0 , 1 ) X\sim(0,1) X∼(0,1),给定 α ( 0 < α < 1 ) \alpha(0<\alpha<1) α(0<α<1),找到 u α u_\alpha uα满足 P ( X > u α ) = α P(X>u_\alpha)=\alpha P(X>uα)=α, u α u_\alpha uα称为上 α \alpha α分位数
u 0.05 = 1.645 u_{0.05}=1.645 u0.05=1.645
u 0.025 = 1.96 u_{0.025}=1.96 u0.025=1.96
u 0.01 = 2.33 u_{0.01}=2.33 u0.01=2.33
已知 X X X是某分布,求 Y = f ( X ) Y=f(X) Y=f(X)是什么分布
例
已知:
X 7 8 9 10 P 0.1 0.3 0.4 0.2 \begin{array}{c|c} X & 7 & 8 & 9 & 10 \\ \hline P & 0.1 & 0.3 & 0.4 & 0.2 \\ \end{array} XP70.180.390.4100.2
Y = 4 X Y=4X Y=4X
则有:
Y 28 32 36 40 P 0.1 0.3 0.4 0.2 \begin{array}{c|c} Y & 28 & 32 & 36 & 40 \\ \hline P & 0.1 & 0.3 & 0.4 & 0.2 \\ \end{array} YP280.1320.3360.4400.2
设 X X X的密度函数是 f X ( x ) , y = g ( x ) , Y = g ( X ) f_X(x),y=g(x),Y=g(X) fX(x),y=g(x),Y=g(X)
例题
【例1】
已知: X X X的密度函数为 f X ( x ) f_X(x) fX(x), Y = 3 X + 2 Y=3X+2 Y=3X+2
解:
F Y ( x ) = P ( Y ≤ x ) = P ( 3 X + 2 ≤ x ) = P ( X ≤ x − 2 3 ) = F X ( x − 2 3 ) F_Y(x)=P(Y\leq x)=P(3X+2\leq x)=P(X\leq\displaystyle\frac{x-2}{3})=F_X(\displaystyle\frac{x-2}{3}) FY(x)=P(Y≤x)=P(3X+2≤x)=P(X≤3x−2)=FX(3x−2)
两边求导,得:
f Y ( x ) = 1 3 f X ( x − 2 3 ) f_Y(x)=\displaystyle\frac{1}{3}f_X(\frac{x-2}{3}) fY(x)=31fX(3x−2)
特别地,若 f X ( x ) = { 1 4 0 ≤ x ≤ 4 0 e l s e f_X(x)=\begin{cases} \displaystyle\frac{1}{4} & 0\leq x\leq4\\ 0 & else \end{cases} fX(x)=⎩⎨⎧4100≤x≤4else
则 f Y ( x ) = { 1 12 2 ≤ x ≤ 14 0 e l s e f_Y(x)=\begin{cases} \displaystyle\frac{1}{12} & 2\leq x\leq14\\ 0 & else \end{cases} fY(x)=⎩⎨⎧12102≤x≤14else
若 X X X服从 [ a , b ] [a,b] [a,b]的均匀分布,则 Y = k X + c Y=kX+c Y=kX+c也服从相应区间( [ k a + c , k b + c ] [ka+c,kb+c] [ka+c,kb+c]或 [ k b + c , k a + c ] [kb+c,ka+c] [kb+c,ka+c])上的均匀分布。
【例2】
X ∼ N ( μ , σ 2 ) , Y = a X + b , a ≠ 0 X\sim N(\mu,\sigma^2),Y=aX+b,a\not=0 X∼N(μ,σ2),Y=aX+b,a=0
解:
a > 0 a>0 a>0时, F Y ( x ) = P ( Y ≤ x ) = P ( a X + b ≤ x ) = P ( X ≤ x − b a ) = Φ ( x − b a ) F_Y(x)=P(Y\leq x)=P(aX+b\leq x)=P(X\leq\displaystyle\frac{x-b}{a})=\Phi(\displaystyle\frac{x-b}{a}) FY(x)=P(Y≤x)=P(aX+b≤x)=P(X≤ax−b)=Φ(ax−b)
f Y ( x ) = 1 a ϕ ( x − b a ) = 1 2 π σ e − ( x − b a − μ ) 2 2 σ 2 = 1 2 π a σ e − ( x − ( b + a μ ) ) 2 2 a 2 σ 2 f_Y(x)=\displaystyle\frac{1}{a}\phi(\frac{x-b}{a})=\frac{1}{\sqrt{2\pi}\sigma}e^{-\displaystyle\frac{(\frac{x-b}{a}-\mu)^2}{2\sigma^2}}=\frac{1}{\sqrt{2\pi}a\sigma}e^{-\displaystyle\frac{(x-(b+a\mu))^2}{2a^2\sigma^2}} fY(x)=a1ϕ(ax−b)=2πσ1e−2σ2(ax−b−μ)2=2πaσ1e−2a2σ2(x−(b+aμ))2
a < 0 a<0 a<0时, f Y ( x ) = 1 2 π ( − a ) σ e − ( x − ( b + a μ ) ) 2 2 a 2 σ 2 f_Y(x)=\frac{1}{\sqrt{2\pi}(-a)\sigma}e^{-\displaystyle\frac{(x-(b+a\mu))^2}{2a^2\sigma^2}} fY(x)=2π(−a)σ1e−2a2σ2(x−(b+aμ))2
故有 Y ∼ N ( a μ + b , ( a σ ) 2 ) Y\sim N(a\mu+b,(a\sigma)^2) Y∼N(aμ+b,(aσ)2)
定理:
若 X X X的密度函数为 f X ( x ) , Y = k X + b ( k ≠ 0 ) , f Y ( x ) = 1 ∣ k ∣ f X ( x − b k ) f_X(x),Y=kX+b(k\not=0),f_Y(x)=\displaystyle\frac{1}{|k|}f_X(\frac{x-b}{k}) fX(x),Y=kX+b(k=0),fY(x)=∣k∣1fX(kx−b)
【例3】
X ∼ N ( 0 , 1 ) , Y = X 2 X\sim N(0,1),Y=X^2 X∼N(0,1),Y=X2
解:
x < 0 x<0 x<0时, F Y ( x ) = P ( Y ≤ x ) = P ( X 2 ≤ x ) = 0 F_Y(x)=P(Y\leq x)=P(X^2\leq x)=0 FY(x)=P(Y≤x)=P(X2≤x)=0
x ≥ 0 x\geq0 x≥0时, F Y ( x ) = P ( Y ≤ x ) = P ( X 2 ≤ x ) = P ( − x ≤ X ≤ x ) = ∫ − x x 1 2 π e − t 2 2 d t = 2 ∫ 0 x 1 2 π e − t 2 2 d t F_Y(x)=P(Y\leq x)=P(X^2\leq x)=P(-\sqrt{x}\leq X\leq\sqrt{x})=\displaystyle\int_{-\sqrt{x}}^{\sqrt{x}}\frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}dt=2\displaystyle\int_0^{\sqrt{x}}\frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}dt FY(x)=P(Y≤x)=P(X2≤x)=P(−x≤X≤x)=∫−xx2π1e−2t2dt=2∫0x2π1e−2t2dt
f Y ( x ) = 2 1 2 π e − x 2 1 2 x − 1 2 = 1 2 π e − x 2 x − 1 2 f_Y(x)=\displaystyle2\frac{1}{\sqrt{2\pi}}e^{-\frac{x}{2}}\frac{1}{2}x^{-\frac{1}{2}}=\displaystyle\frac{1}{\sqrt{2\pi}}e^{-\frac{x}{2}}x^{-\frac{1}{2}} fY(x)=22π1e−2x21x−21=2π1e−2xx−21
综上, f Y ( x ) = { 1 2 π e − x 2 x − 1 2 x > 0 0 x ≤ 0 f_Y(x)=\begin{cases} \displaystyle\frac{1}{\sqrt{2\pi}}e^{-\frac{x}{2}}x^{-\frac{1}{2}} & x>0\\ 0 & x\leq0 \end{cases} fY(x)=⎩⎨⎧2π1e−2xx−210x>0x≤0