- 深入解读MaaS技术架构:从模型服务到智能部署的全流程分析
Cc不爱吃洋葱
架构人工智能大语言模型大模型智能部署MaaS技术架构LLM
随着人工智能(AI)的迅速发展,MaaS(ModelasaService,模型即服务)技术架构应运而生。它通过将复杂的AI模型封装为标准化服务,降低了模型的开发和部署门槛,帮助企业快速实现业务场景的智能化升级。本文将深入解析MaaS技术架构,详细阐述其各个组成部分以及如何在实际应用中高效发挥其功能。一、使用方层:从应用接入到业务赋能MaaS技术架构的顶层是使用方层,它主要面向第三方应用,是企业与M
- StringBuilder练习项目代码及相关知识点
1.动态字符串操作需求:编写一个程序,接收用户输入的多个单词,并将它们组合成一个完整的句子,同时支持以下功能:动态添加单词删除某些单词将句子反转importjava.util.Scanner;publicclassStringBuilderDemo{publicstaticvoidmain(String[]args){StringBuildersb=newStringBuilder();Scann
- 想要了解大模型,看懂这一篇就够了!大模型工作流程及核心参数介绍!
Gq.xxu
qwen3vllmtransforms大语言模型部署深度学习人工智能
若想深入探究大模型核心参数的效果与作用,就务必先弄清大模型的工作流程,明确核心参数在流程各阶段的效能与功能,知晓其具体含义。一,大模型的工作流程大模型运行时的工作原理可以概括为输入处理→特征提取→模型推理→结果生成四个核心阶段,整个过程融合了深度学习架构、自然语言处理技术以及分布式计算能力。从用户输入到大模型输出,整个工作的处理流程如下:输入文本→分词→嵌入+位置编码→Transformer多层处
- 深度学习-Tensor
Tensor张量:与numpy中的ndarray不同之处:tensor可以在GPU或其他专用硬件上运行,以加速计算。一、Tensor初始化1.直接从数据中创建data=[[1,2],[3,4]]x_data=torch.tensor(data)2.从numpy数组创建np_array=np.array(data)x_np=torch.from_numpy(np_array)3.从另一个Tensor
- 从0开始学习计算机视觉--Day08--卷积神经网络
之前我们提到,神经网络是通过全连接层对输入做降维处理,将输入的向量通过矩阵和激活函数进行降维,在神经元上输出激活值。而卷积神经网络中,用卷积层代替了全连接层。不同的是,这里的输入不再需要降维,而是可以保留输入的空间结构,例如输入的是32×32×3的图片,在全连接层中是3072×1的向量,而卷积层里则保持不变。这里的改变的地方是对于同样的WX的函数形式,这里是把5×5×3的权重矩阵(也叫卷积核)向量
- 基于存算一体架构的实时深度学习推理优化
瑕疵
热点资讯架构深度学习人工智能
博客主页:瑕疵的CSDN主页Gitee主页:瑕疵的gitee主页⏩文章专栏:《热点资讯》基于存算一体架构的实时深度学习推理优化基于存算一体架构的实时深度学习推理优化基于存算一体架构的实时深度学习推理优化引言存算一体架构的核心优势1.能效比突破2.实时性保障架构设计与实现技术1.存储单元创新2.硬件加速器设计3.电路级优化深度学习推理优化策略1.模型压缩技术2.硬件-软件协同优化3.运行时调度典型应
- 人工智能LLM | 基础配置 | 通过环境变量配置API-KEY 一文通教程
H-大叔
人工智能大模型实战与教程人工智能
在实战开发大语言模型的过程中,经常会遇到各种API-KEY的配置问题,例如GPTOpenAIKEY的配置,而且目前大部分都要求将其配置在环境变量中,下面将会讲解如何在Linux、macOS、Windows中配置,本文一文通教程。您可以使用配置环境变量的方法,避免在调用各种SDK时显式地配置API-KEY,从而降低泄漏风险。环境变量是操作系统中用于存储有关系统环境的信息的变量。您可以通过环境变量来配
- 【人工智能】ChatGPT、DeepSeek-R1、DeepSeek-V3 辨析
G皮T
#大语言模型人工智能LLM大语言模型chatgptdeepseekDeepSeek-R1DeepSeek-V3
ChatGPT、DeepSeek-R1、DeepSeek-V3辨析1.ChatGPT对比DeepSeek1.1技术相似点1.2主要差异1.3关键区别1.4如何选择1.5总结2.DeepSeek-R1对比DeepSeek-V32.1DeepSeek-R12.2DeepSeek-V32.3核心区别总结2.4如何选择3.R1和V3有什么含义3.1DeepSeekR1的"R"3.2DeepSeekV3的"
- 在学校研究学习的偏算法,秋招投递开发岗位还有希望吗
程序员
前言Thelasttime,Ihavelearned这是星球同学,在周五晚上答疑聊天的时候对我的提问:如果简历上的项目偏算法,但是自学了一些操作系统和计网的知识,秋招的时候投递偏开发的岗位有希望吗?简历上是否也要加上相关项目?估计也是很多朋友的疑问,毕竟很多同学读研,有些老师疯狂push,要成果,发论文。要想尽快发论文,那只能“研究”人工智能、算法的一些东西了。但是众所周知,算法要求很高,不仅要求
- Java服务化架构转型实战:从“单体噩梦”到“微服务交响曲”,代码深度解析!
墨夶
Java学习资料1架构java微服务
**从0到1构建企业级服务化架构**1.服务拆分:从“大而全”到“小而美”1.1按业务领域拆分服务//SpringCloud微服务示例:订单服务@SpringBootApplication@EnableDiscoveryClient//服务注册发现publicclassOrderServiceApplication{publicstaticvoid
- 【AI论文】基于图像思维的多模态推理:理论基础、方法及未来前沿
东临碣石82
人工智能
摘要:近期,文本思维链(Chain-of-Thought,CoT)显著推动了多模态推理的进展。在这一范式下,模型在语言层面进行推理。然而,这种以文本为中心的方法将视觉信息视为静态的初始语境,从而在丰富的感知数据与离散的符号思维之间造成了根本性的“语义鸿沟”。人类认知往往超越语言的局限,将视觉作为动态的心理草图板加以利用。如今,人工智能领域也正经历着类似的演变,标志着从仅能对图像进行思考的模型向真正
- OpenCV CUDA模块设备层-----高效地计算两个 uint 类型值的带权重平均值
村北头的码农
OpenCVopencv人工智能计算机视觉
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述OpenCV的CUDA模块(cudev)中的一个设备端内联函数,用于高效地计算两个uint类型值的带权重平均值。该函数返回两个无符号整数a和b的加权平均值,权重为:return(a*3+b)/4;函数原型__device____forceinline__uintc
- 【深度学习新浪潮】什么是上下文长度?
小米玄戒Andrew
深度学习新浪潮深度学习人工智能LLM语言模型大模型模型优化上下文长度
大型语言模型(LLM)的上下文长度是指模型在处理当前输入时能够有效利用的历史文本长度,通常以token(如单词、子词或标点)为单位衡量。例如,GPT-4支持128Ktoken的上下文,而Llama4Scout甚至达到了10Mtoken的惊人规模。这一指标直接影响模型在长文档理解、多轮对话等复杂任务中的表现。一、上下文长度的合理范围上下文长度的选择需结合具体应用场景:日常对话:通常需要8K–32Kt
- Manus AI与多语言手写识别
tonngw
人工智能
技术文章大纲:ManusAI与多语言手写识别引言手写识别技术的发展背景与市场需求ManusAI的定位与核心技术优势多语言场景下的挑战与机遇ManusAI的核心技术架构基于深度学习的端到端手写识别模型多模态数据融合(笔迹压力、书写轨迹等)自适应语言模型与字符集扩展机制多语言手写识别的关键技术非拉丁语系(中文、阿拉伯语等)的笔迹特征提取小样本语言数据的迁移学习策略上下文感知与语法纠错在低资源语言中的应
- DeepSeek 帮助自己的工作
引言简述人工智能助手在职场中的普及趋势DeepSeek作为智能创作助手的核心功能概述DeepSeek的核心能力信息检索与整合:基于用户意图精准搜索并生成答案多场景应用:技术文档撰写、数据分析、代码生成等交互优化:遵循用户指定的格式与内容规范职场应用场景与实操案例技术文档撰写自动生成API文档框架根据需求补充技术细节示例代码块与公式的规范化输出数据分析支持快速检索行业数据并生成可视化建议数学建模中的
- Kotlin 协程四 —— Flow 和 Channel 的应用
金戈鐡馬
Androidkotlinandroid协程FlowChannel
一、Flow与Channel的相互转换1.1Flow转换为Channel1.1.1ChannelFlow@InternalCoroutinesApipublicabstractclassChannelFlow(//upstreamcontext@JvmFieldpublicvalcontext:CoroutineContext,//buffercapacitybetweenupstreamandd
- Python机器学习与深度学习:决策树、随机森林、XGBoost与LightGBM、迁移学习、循环神经网络、长短时记忆网络、时间卷积网络、自编码器、生成对抗网络、YOLO目标检测等
WangYan2022
机器学习/深度学习Python机器学习深度学习随机森林迁移学习
融合最新技术动态与实战经验,旨在系统提升以下能力:①掌握ChatGPT、DeepSeek等大语言模型在代码生成、模型调试、实验设计、论文撰写等方面的实际应用技巧②深入理解深度学习与经典机器学习算法的关联与差异,掌握其理论基础③熟练运用PyTorch实现各类深度学习模型,包括迁移学习、循环神经网络(RNN)、长短时记忆网络(LSTM)、时间卷积网络(TCN)、自编码器、生成对抗网络(GAN)、YOL
- 人工智能-基础篇-23-智能体Agent到底是什么?怎么理解?(智能体=看+想+做)
weisian151
人工智能人工智能
1、智能体是什么?想象你有一个超级聪明的小助手,它能:自己看环境(比如看到天气、听到声音、读到数据);自己做决定(比如下雨了要关窗,电量低要去充电);自己动手干活(比如帮你订外卖、打扫房间、开车);越用越聪明(比如记住你的习惯,下次不用你提醒)。这个“小助手”就是智能体(Agent)——它是一个能自主感知、思考、行动并学习的系统,可以是软件(比如手机里的AI助手)、硬件(比如机器人),或者软硬结合
- 【AI大模型】神经网络反向传播:核心原理与完整实现
我爱一条柴ya
学习AI记录人工智能神经网络深度学习aiAI编程
一、反向传播的本质与意义反向传播(Backpropagation)是神经网络训练的核心算法,通过链式法则高效计算损失函数对网络参数的梯度,实现神经网络的优化学习。它的出现解决了神经网络训练中的关键瓶颈,使深度学习成为可能。为什么需要反向传播?参数规模爆炸:现代神经网络有数百万至数十亿参数手动计算不可行:复杂网络梯度计算量指数级增长高效优化需求:梯度下降算法需要精确的梯度计算二、前向传播与反向传播对
- 基于YOLOv8深度学习架构的智能农业巡检小车系统—面向农作物与杂草实时精准识别的创新实践
1.科技赋能智慧农业随着全球人口的持续增长和农业生产面临的挑战,精准农业已成为现代农业发展的必然趋势。其中,农作物与杂草的精准识别是实现自动化、智能化管理的关键一环。传统的人工除草效率低下,化学除草则可能带来环境问题。因此,开发高效、精准、环保的智能农业系统迫在眉睫。本文将深入探讨一款基于深度学习和智能硬件集成的农田作业智能小车系统。我们将重点聚焦于其硬件系统设计、软件系统架构、核心算法创新(特别
- 多角色AI Agent:基于LLM的虚拟角色扮演系统
AI天才研究院
AI人工智能与大数据人工智能ai
多角色AIAgent:基于LLM的虚拟角色扮演系统关键词多角色AIAgentLargeLanguageModel(LLM)虚拟角色扮演系统人工智能自然语言处理程序设计摘要本文旨在探讨多角色AIAgent的基础知识以及其如何在虚拟角色扮演系统中发挥作用。我们将首先介绍多角色AIAgent的概念、历史背景和基本原理。随后,我们将深入探讨LLM(大语言模型)在虚拟角色扮演系统中的应用,包括其工作原理、核
- 【算法】解数独:C++ 实现与策略探讨
master_chenchengg
算法提升算法java开发语言
【算法】解数独:C++实现与策略探讨一、引言:C++算法技术的魔力与解数独的智慧二、技术概述:数独求解的艺术定义与技术框架核心特性和优势代码示例:基础回溯解法三、技术细节:解数独的逻辑与挑战原理解析难点分析四、实战应用:从游戏到人工智能应用场景解决方案展示五、优化与改进潜在问题改进建议六、常见问题与解决方案七、总结与展望一、引言:C++算法技术的魔力与解数独的智慧在算法领域,C++凭借其高效、灵活
- FastMCP:用于构建MCP服务器的开源Python框架
NetX行者
AI编程服务器开源python
在人工智能领域,模型上下文协议(ModelContextProtocol,简称MCP)作为一种标准化的协议,为大型语言模型(LLM)提供了丰富的上下文和工具支持。而FastMCP作为构建MCP服务器和客户端的Python框架,以其简洁的API设计、高效的开发体验以及强大的扩展能力,正逐渐成为开发者们的首选工具。一、FastMCP简介FastMCP是一个用于构建MCP服务器和客户端的Python框架
- Python打卡:Day40
#先继续之前的代码importtorchimporttorch.nnasnnimporttorch.optimasoptimfromtorch.utils.dataimportDataLoader,Dataset#DataLoader是PyTorch中用于加载数据的工具fromtorchvisionimportdatasets,transforms#torchvision是一个用于计算机视觉的库,
- Ubuntu下安装多版本CUDA及灵活切换全攻略
芯作者
D2:ubuntulinuxubuntu
——释放深度学习潜能,告别版本依赖的烦恼!**为什么需要多版本CUDA?在深度学习、科学计算等领域,不同框架(TensorFlow、PyTorch等)对CUDA版本的要求各异。同时升级框架或维护旧项目时,版本冲突频发。多版本CUDA共存+一键切换是高效开发的刚需!本文将手把手教你实现这一能力,并分享独创的“动态软链接+环境隔离”技巧,让版本管理行云流水!环境准备硬件要求NVIDIA显卡(支持CUD
- 【解决方案】Building wheel for opencv-python:安装卡顿的原因与解决方案。
当你pipinstallopencv-python或pipinstallopencv-contrib-python时,命令行停在Buildingwheelforopencv-python(PEP517)...-似乎卡住了。其实,这并非程序假死,而是OpenCV这个庞大的C++library在进行compile,这个过程非常耗时。为何安装过程如此漫长?这是因为OpenCV是一个庞大的C++libra
- Python在人工智能领域的实际应用:示例代码解析
辣条yyds
pythonpython人工智能开发语言
摘要:本文将通过几个典型的人工智能应用场景,展示Python在图像识别、自然语言处理、推荐系统等方面的高级用法。通过示例代码,带大家深入理解Python在人工智能领域的实际应用。正文:Python作为一门流行的编程语言,凭借其简洁的语法、丰富的库和框架,成为了人工智能(AI)领域的主流开发语言。下面,我们将通过几个示例,探讨Python在人工智能方向的实际应用。示例一:图像识别-使用OpenCV进
- Tansformer的Multi-Head Attention组件
数字化与智能化
大模型基础Transformer框架transformer多头注意力机制
一、Transformer的注意力机制Transformer的注意力机制是对传统序列建模方法的颠覆性创新。它通过全局并行的关联计算解决了RNN的效率与长距离依赖瓶颈,通过动态权重和多头设计增强了模型对复杂信息的捕捉能力,最终成为现代人工智能的核心技术基石。其意义不仅在于提升了模型性能,更在于提供了一种“计算关联”的通用思路,推动了人工智能向更高效、更通用的方向发展。在Transformer之前,循
- 深入详解 AI 与深度学习:从零开始掌握 BERT 模型架构
拉不拉斯AICoding
技术探索人工智能深度学习bert
深入详解AI与深度学习:从零开始掌握BERT模型架构引言在自然语言处理(NLP)领域,BERT(BidirectionalEncoderRepresentationsfromTransformers)是近年来最具影响力的模型之一。它通过双向上下文理解彻底改变了NLP任务的处理方式。本文将从基础概念到核心原理、应用场景和实践技巧,深入浅出地讲解BERT,帮助初学者快速掌握这一技术。一、BERT的核心
- BigQuery对象引用(ObjectRef)全面指南:一站式整合结构化与非结构化多模态数据分析
引言企业需要同时管理有组织表格中的结构化数据,以及日益增长的非结构化数据(如图片、音频和文档)。传统上,联合分析这些多样化数据类型非常复杂,通常需要使用不同的工具。非结构化媒体通常需要导出到专门的服务进行处理(如图片分析需计算机视觉服务,音频需语音转文本引擎),这会造成数据孤岛,阻碍全局分析视角的建立。以虚构的电商支持系统为例:结构化的工单信息存储在BigQuery表中,而相关的支持通话录音或损坏
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$