OpenCV4 图像处理与视频分析实战教程 笔记

14. 图像直方图的比较

比较巴氏距离和余弦相似度

void hist_compare() {
	Mat src1 = imread("D:/images/hist_01.jpg");
	Mat src2 = imread("D:/images/hist_02.jpg");

	Mat hist1, hist2;
	int channels[] = { 0, 1, 2 };
	int histSize[] = { 256, 256, 256 };
	float c1[] = { 0, 255 };
	float c2[] = { 0, 255 };
	float c3[] = { 0, 255 };
	const float* histRanges[] = { c1, c2, c3 };

	calcHist(&src1, 1, channels, Mat(), hist1, 3, histSize, histRanges, true, false);
	calcHist(&src2, 1, channels, Mat(), hist2, 3, histSize, histRanges, true, false);

	// 归一化
	normalize(hist1, hist1, 0, 1.0, NORM_MINMAX, -1, Mat());
	normalize(hist2, hist2, 0, 1.0, NORM_MINMAX, -1, Mat());

	double h12 = compareHist(hist1, hist2, HISTCMP_BHATTACHARYYA);
	double h11 = compareHist(hist1, hist1, HISTCMP_BHATTACHARYYA);
	cout << "HISTCMP_BHATTACHARYYA, h12= " << h12 << " h11=" << h11 << endl;

	double c12 = compareHist(hist1, hist2, HISTCMP_CORREL);
	double c11 = compareHist(hist1, hist1, HISTCMP_CORREL);
	cout << "HISTCMP_CORREL, c12= " << c12 << " c11=" << c11 << endl;

}

OpenCV4 图像处理与视频分析实战教程 笔记_第1张图片

15. 使用LUT

void Advance::lut(Mat& src) {
	Mat color = imread("D:/images/lut.png");
	Mat lut = Mat::zeros(256, 1, CV_8UC3);
	for (size_t i = 0; i < 256; ++i) {
		lut.at<Vec3b>(i, 0) = color.at<Vec3b>(10, i);
	}
	imshow("color", color);
	Mat dst;
	LUT(src, lut, dst);
	imshow("lut", dst);
	applyColorMap(src, dst, COLORMAP_DEEPGREEN);
	imshow("default colormap", dst);
}

19. 自定义滤波

void Advance::filter2d(Mat& src) {
	// 均值滤波器
	int k = 15;
	Mat mkernel = Mat::ones(k, k, CV_32F) / (float)(k*k);
	Mat dst;
	filter2D(src, dst, -1, mkernel, Point(-1, -1), 0, BORDER_DEFAULT);
	imshow("2d filter", dst);

	// 非均值滤波
	Mat robot = (Mat_<int>(2, 2) << 1, 0, 0, -1);
	Mat result;
	filter2D(src, result, CV_32F, robot, Point(-1, -1), 127, BORDER_DEFAULT);
	convertScaleAbs(result, result);
	imshow("robot filter", result);
}

20. 图像的梯度

图像梯度的3个算子,robot,sobel和scharr算子
OpenCV4 图像处理与视频分析实战教程 笔记_第2张图片

void Advance::gradient(Mat& src) {
	// robot 算子
	Mat robot_x = (Mat_<int>(2,2) << 1, 0, 0, -1);
	Mat robot_y = (Mat_<int>(2,2) << 0, 1, -1, 0);
	Mat grad_x, grad_y;
	filter2D(src, grad_x, CV_32F, robot_x, Point(-1, -1), 0, BORDER_DEFAULT);
	filter2D(src, grad_y, CV_32F, robot_y, Point(-1, -1), 0, BORDER_DEFAULT);
	convertScaleAbs(grad_x, grad_x);
	convertScaleAbs(grad_y, grad_y);
	Mat result;
	add(grad_x, grad_y, result);
	imshow("robot gradient", result);

	// Sobel算子
	Sobel(src, grad_x, CV_32F, 1, 0);
	Sobel(src, grad_y, CV_32F, 0, 1);
	convertScaleAbs(grad_x, grad_x);
	convertScaleAbs(grad_y, grad_y);
	Mat result2;
	addWeighted(grad_x, 0.5, grad_y, 0.5, 0, result2);
	imshow("sobel, add weight", result2);
	
	// Scharr算子
	Mat result3;
	Scharr(src, grad_x, CV_32F, 1, 0);
	Scharr(src, grad_y, CV_32F, 0, 1);
	convertScaleAbs(grad_x, grad_x);
	convertScaleAbs(grad_y, grad_y);
	addWeighted(grad_x, 0.5, grad_y, 0.5, 0, result3);
	imshow("scharr", result3);
}

几种不同算子的梯度提取效果.

21. 拉普拉斯算子和图像的锐化

拉普拉斯算子对图像的噪声比较敏感

void Advance::laplacian(Mat& src) {
	Mat dst;
	// 拉普拉斯二阶导梯度提取,对噪声很敏感
	Laplacian(src, dst, -1, 3, 1.0, 0, BORDER_DEFAULT);
	imshow("Laplacian demo", dst);

	// 图像锐化
	Mat dst2;
	Mat filter = (Mat_<int>(3, 3) << 0, -1, 0, 
									 -1, 5, -1, 
									  0, -1, 0);
	filter2D(src, dst2, CV_32F, filter, Point(-1, -1), 0, BORDER_DEFAULT);
	convertScaleAbs(dst2, dst2);
	imshow("sharpen demo", dst2);

}

22. USM锐化

sharp_image = blur - laplacian

void Advance::USM(Mat& src) {
	Mat blur;
	GaussianBlur(src, blur, Size(3, 3), 0);

	Mat lap;
	Laplacian(src, lap, -1, 1, 1.0, 0, BORDER_DEFAULT);

	Mat usm;
	addWeighted(blur, 1.0, lap, -1.0, 0, usm);

	namedWindow("usm", WINDOW_AUTOSIZE);
	imshow("usm", blur);
}

23. 图像噪声

噪声分为椒盐噪声和高斯噪声

void Advance::Noise(Mat& src) {
	Mat src2 = src.clone();

	RNG rng(12345);
	// 椒盐噪声
	int nums = 10000;
	int w = src.cols;
	int h = src.rows;

	cout << w << " " << h << endl;

	for (int i = 0; i < nums; ++i) {

		int x = rng.uniform(0, w);
		int y = rng.uniform(0, h);

		if (i % 2 == 0) {
			src.at<Vec3b>(y, x) = Vec3b(0, 0, 0);
		}
		else {
			src.at<Vec3b>(y, x) = Vec3b(255, 255, 255);
		}
	}
	imshow("椒盐噪声", src);


	Mat dst;
	Mat noise = Mat::zeros(src2.size(), src2.type());
	randn(noise, Scalar(25, 25, 25), Scalar(10, 10, 10));
	imshow("高斯噪声", noise);
	addWeighted(src2, 1.0, noise, 1.0, 0, dst);
	imshow("高斯噪声加入结果", dst);

}

24. 图像去噪

去噪有中值滤波,高斯滤波

void Advance::median_blur(Mat& src) {
	RNG rng(12345);
	// 椒盐噪声
	int nums = 10000;
	int w = src.cols;
	int h = src.rows;

	cout << w << " " << h << endl;

	for (int i = 0; i < nums; ++i) {

		int x = rng.uniform(0, w);
		int y = rng.uniform(0, h);

		if (i % 2 == 0) {
			src.at<Vec3b>(y, x) = Vec3b(0, 0, 0);
		}
		else {
			src.at<Vec3b>(y, x) = Vec3b(255, 255, 255);
		}
	}
	imshow("椒盐噪声", src);
	Mat dst;
	medianBlur(src, dst, 5);
	imshow("中值滤波去噪声", dst);

	GaussianBlur(src, dst, Size(5,5), 0);
	imshow("高斯滤波去噪", dst);

}

高斯滤波对椒盐噪声去除效果并没有中值滤波好

void Advance::median_blur(Mat& src) {
	
	Mat noise = Mat::zeros(src.size(), src.type());
	randn(noise, Scalar(50, 60, 70), Scalar(55, 50, 50));
	addWeighted(src, 1.0, noise, 0.7, 0, src);
	imshow("添加高斯噪声", src);

	Mat dst;
	medianBlur(src, dst, 5);
	imshow("中值滤波去噪声", dst);

	GaussianBlur(src, dst, Size(5, 5), 0);
	imshow("高斯滤波去噪", dst);

}

高斯噪声去除比椒盐噪声要困难很多,两种滤波的去除效果都很一般

25. 边缘保留滤波

分为高斯双边滤波和非局部均值滤波,其中非局部均值滤波运行很慢,灰度和彩色的api是分开的.

void Advance::bilateral_filter(Mat& src) {

	Mat noise = Mat::zeros(src.size(), src.type());
	randn(noise, Scalar(50, 60, 70), Scalar(55, 50, 50));
	addWeighted(src, 1.0, noise, 0.7, 0, src);
	imshow("添加高斯噪声", src);

	// 高斯双边滤波
	Mat dst;
	bilateralFilter(src, dst, 0, 200, 0);
	imshow("高斯双边滤波", dst);

	// 非局部均值滤波
	// 灰度图有效
	cvtColor(src, src, COLOR_BGR2GRAY);
	fastNlMeansDenoising(src, dst, 15, 10, 30);
	imshow("非局部均值滤波", dst);

}

26. canny边缘提取加上trackbar演示

static void canny_demo(int thres, void* user_data) {
	Mat src = *((Mat *)user_data);
	Mat edges;
	Canny(src, edges, thres, thres * 3, 3, false);
	imshow("canny output", edges);
}


void Advance::canny(Mat& src) {
	namedWindow("canny", WINDOW_AUTOSIZE);
	int thres=50;
	createTrackbar("canny threshod: ", "canny", &thres, 100, canny_demo, (void*)(&src));
	imshow("canny", src);
	canny_demo(thres, &src);
}

OpenCV4 图像处理与视频分析实战教程 笔记_第3张图片

27. 二值图像的概念

五种二值分割方法
OpenCV4 图像处理与视频分析实战教程 笔记_第4张图片

void Advance::threshold_demo(Mat& src) {
	Mat gray, binary;
	cvtColor(src, gray, COLOR_BGR2GRAY);
	threshold(gray, binary, 127, 255, THRESH_BINARY);
	imshow("THRESH_BINARY", binary);

	threshold(gray, binary, 127, 255, THRESH_BINARY_INV);
	imshow("THRESH_BINARY_INV", binary);

	threshold(gray, binary, 127, 255, THRESH_TRUNC);
	imshow("THRESH_TRUNC", binary);

	threshold(gray, binary, 127, 255, THRESH_TOZERO);
	imshow("THRESH_TOZERO", binary);

	threshold(gray, binary, 127, 255, THRESH_TOZERO_INV);
	imshow("THRESH_TOZERO_INV", binary);

}

28. 全局阈值

OpenCV4 图像处理与视频分析实战教程 笔记_第5张图片

void Advance::global_threshold(Mat& src) {
	Mat gray, binary;
	cvtColor(src, gray, COLOR_BGR2GRAY);
	// 求均值
	Scalar m = mean(gray);
	threshold(gray, binary, m[0], 255, THRESH_BINARY);
	imshow("mean", binary);

	// OTSU
	double t1 = threshold(gray, binary, 0, 255, THRESH_BINARY | THRESH_OTSU);
	imshow("OTSU", binary);
	cout << "OTSU threshold: " << t1 << endl;
	   
	// 三角法 triangle
	double t2 = threshold(gray, binary, 0, 255, THRESH_BINARY | THRESH_TRIANGLE);
	imshow("triangle", binary);
	cout << "triangle threshold: " << t2 << endl;

}

OpenCV4 图像处理与视频分析实战教程 笔记_第6张图片

29. 自适应阈值

自适应阈值主要用在有阴影的图片上面
OpenCV4 图像处理与视频分析实战教程 笔记_第7张图片

void Advance::adjust_threshold(Mat& src) {
	Mat dst, gray;
	cvtColor(src, gray, COLOR_BGR2GRAY);

	adaptiveThreshold(gray, dst, 255, ADAPTIVE_THRESH_GAUSSIAN_C, THRESH_BINARY, 25, 10);
	imshow("ADAPTIVE_THRESH_GAUSSIAN_C", dst);

	adaptiveThreshold(gray, dst, 255, ADAPTIVE_THRESH_MEAN_C, THRESH_BINARY, 25, 10);
	imshow("ADAPTIVE_THRESH_MEAN_C", dst);
}

30. 联通件的扫描

void Advance::connect(Mat& src) {
	Mat gray, binary;
	GaussianBlur(src, src, Size(3, 3), 0);
	cvtColor(src, gray, COLOR_BGR2GRAY);
	threshold(gray, binary, 0, 255, THRESH_BINARY | THRESH_OTSU);
	imshow("otsu", binary);

	Mat labels = Mat::zeros(binary.size(), CV_32S);
	int num_labels = connectedComponents(binary, labels, 8, CV_32S, CCL_DEFAULT);
	printf("num of objects %d", num_labels-1);


	RNG rng(123);
	vector<Vec3b> colors(num_labels);
	colors[0] = Vec3b(0, 0, 0);
	for (int i = 1; i < num_labels; ++i) {
		colors[i] = Vec3b(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));
	}

	Mat result = Mat::zeros(src.size(), src.type());
	for (int h = 0; h < binary.rows; ++h) {
		for (int w = 0; w < binary.cols; ++w) {
			int label = labels.at<int>(h, w);
			result.at<Vec3b>(h, w) = colors[label];
		}
	}
	putText(result, format("num of objects %d", num_labels - 1), Point(50, 50), FONT_HERSHEY_PLAIN, 2, Scalar(0, 255, 0), 2, 8);
	imshow("colorful", result);

}

OpenCV4 图像处理与视频分析实战教程 笔记_第8张图片

31. 带统计信息联通件扫描

统计的信息有联通件对中心,外接矩形的左上角坐标,高宽值,联通件面积等值。

void Advance::ccl_statistic_demo(Mat &image) {
	Mat gray, binary;
	cvtColor(image, gray, COLOR_BGR2GRAY);
	threshold(gray, binary, 0, 255, THRESH_BINARY | THRESH_OTSU);
	imshow("otsu", binary);

	Mat labels = Mat::zeros(binary.size(), CV_32S);
	Mat stats, centroids;
	int num_labels = connectedComponentsWithStats(binary, labels, stats, centroids, 8, CV_32S, CCL_DEFAULT);

	// 生成不同的颜色
	RNG rng(123);
	vector<Vec3b> colors(num_labels);
	colors[0] = Vec3b(0, 0, 0);
	for (int i = 1; i < num_labels; ++i) {
		colors[i] = Vec3b(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));
	}


	Mat result = Mat::zeros(image.size(), CV_8UC3);
	for (int h = 0; h < binary.rows; ++h) {
		for (int w = 0; w < binary.cols; ++w) {
			int label = labels.at<int>(h, w);
			result.at<Vec3b>(h, w) = colors[label];
		}
	}

	for (int i = 1; i < num_labels; ++i) {
		int cx = centroids.at<double>(i, 0);
		int cy = centroids.at<double>(i, 1);
		circle(result, Point(cx, cy), 3, Scalar(0, 255, 0), 2, LINE_8, 0);
		
		int x = stats.at<int>(i, CC_STAT_LEFT);
		int y = stats.at<int>(i, CC_STAT_TOP);
		int height = stats.at<int>(i, CC_STAT_HEIGHT);
		int width = stats.at<int>(i, CC_STAT_WIDTH);
		int area = stats.at<int>(i, CC_STAT_AREA);
		
		Rect rect(x, y, width, height);
		rectangle(result, rect, Scalar(0, 0, 255), 2, LINE_8, 0);
		putText(result, format("%d", area), Point(x, y), FONT_HERSHEY_PLAIN, 2, Scalar(255, 0, 0), 1, LINE_8);

	}

	putText(result, format("num of objects %d", num_labels - 1), Point(10, 10), FONT_HERSHEY_PLAIN, 1, Scalar(0, 255, 0), 2, 8);
	imshow("colorful", result);


}

OpenCV4 图像处理与视频分析实战教程 笔记_第9张图片

32. 轮廓的发现和绘制

void Advance::find_contours(Mat &image) {

	Mat gray, binary;
	cvtColor(image, gray, COLOR_BGR2GRAY);
	threshold(gray, binary, 0, 255, THRESH_BINARY | THRESH_OTSU);
	imshow("otsu", binary);


	vector<vector<Point>> contours;
	vector<Vec4i> hirerachy;
	findContours(binary, contours, hirerachy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point());
	drawContours(image, contours, -1, Scalar(0, 255, 0), 2, LINE_8);
	imshow("find contours", image);

}

OpenCV4 图像处理与视频分析实战教程 笔记_第10张图片

33. 图像轮廓的计算

void Advance::cal_contours(Mat &image) {
	Mat gray, binary;
	cvtColor(image, gray, COLOR_BGR2GRAY);
	threshold(gray, binary, 0, 255, THRESH_BINARY_INV | THRESH_OTSU);
	imshow("otsu", binary);

	vector<vector<Point>> contours;
	vector<Vec4i> hirerachy;
	findContours(binary, contours, hirerachy, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE, Point());
	
	for (size_t i = 0; i < contours.size(); ++i) {
		double area = contourArea(contours[i]);
		double len = arcLength(contours[i], true);

		if (area < 100 || area < 10) {
			continue;
		}
		Rect box = boundingRect(contours[i]);
		//drawContours(image, contours, i, Scalar(0, 255, 0), 2, LINE_8);
		//rectangle(image, box, Scalar(0, 255, 0), 2);
		RotatedRect rrt = minAreaRect(contours[i]);
		// 绘制最小包围的椭圆
		//ellipse(image, rrt, Scalar(255, 0, 0), 2);
		// 最小包围的斜矩形
		Point2f pts[4];
		rrt.points(pts);
		for (int j = 0; j < 4; ++j) {
			line(image, pts[j], pts[(j + 1) % 4], Scalar(255,0, 255), 2);
		}
		double angle = rrt.angle;
		printf("index: %d, area: %.1f, length: %.1f, angle: %.1f\n", i, area, len, angle);
	}
	imshow("find contours", image);
}

34. 轮廓匹配

void contour_info(Mat &image, vector<vector<Point>> &contours) {
	Mat dst, gray, binary;
	
	GaussianBlur(image, dst, Size(3, 3), 0);
	cvtColor(dst, gray, COLOR_BGR2GRAY);
	threshold(gray, binary, 0, 255, THRESH_BINARY | THRESH_OTSU);

	imshow("binary", binary);
	vector<Vec4i> hirearchy;
	findContours(binary, contours, hirearchy, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);

}


void Advance::match_contours() {
	Mat src1 = imread("D:/images/abc.png");
	Mat src2 = imread("D:/images/a5.png");
	if (src1.empty() || src2.empty()) {
		printf("could not load image");
		return;
	}
	imshow("input1", src1);
	imshow("imput2", src2);

	vector<vector<Point>> contours1, contours2;
	contour_info(src1, contours1);
	contour_info(src2, contours2);

	Moments mm2 = moments(contours2[0]);
	Mat hu2;
	HuMoments(mm2, hu2);
	for (size_t i = 0; i < contours1.size(); ++i) {
		Moments mm = moments(contours1[i]);
		double cx = mm.m10 / mm.m00;
		double cy = mm.m01 / mm.m00;
		circle(src1, Point(cx, cy), 3, Scalar(255, 0, 255), 2);
		Mat hu;
		HuMoments(mm, hu);
		double dist = matchShapes(hu, hu2, CONTOURS_MATCH_I1, 0);
		if (dist < 1.0) {
			printf("match distance value: %.2f\n", dist);
			drawContours(src1, contours1, i, Scalar(0, 255, 0), 2);
		}
	}
	imshow("contours match demo", src1);
}

OpenCV4 图像处理与视频分析实战教程 笔记_第11张图片

3.5 轮廓逼近和拟合

使用线段去逼近

void Advance::approx_contours(Mat &image) {
	Mat dst;
	GaussianBlur(image, dst, Size(3, 3), 0);
	Mat gray;
	cvtColor(dst, gray, COLOR_BGR2GRAY);

	Mat binary;
	threshold(gray, binary, 0, 255, THRESH_BINARY | THRESH_OTSU);
	imshow("binary", binary);


	vector<vector<Point>> contours;
	vector<Vec4i> hirearchy;
	findContours(binary, contours, hirearchy, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);

	for (size_t i = 0; i < contours.size(); ++i) {
		Mat result;
		approxPolyDP(contours[i], result, 4, true);
		printf("coners: %d\n", result.rows);


		double c = arcLength(contours[i], true);
		double s = contourArea(contours[i]);

		// 计算中心点
		Moments mm = moments(contours[i]);
		double cx = mm.m10 / mm.m00;
		double cy = mm.m01 / mm.m00;
		if (result.rows == 3) {
			putText(image, format("triangle, c=%.0f, s=%.0f\n", c, s), Point(cx-10, cy-10), FONT_HERSHEY_PLAIN, 1, Scalar(255, 0, 255));
			circle(image, Point(cx, cy), 3, Scalar(0, 255, 0));
		}
	}
	imshow("approx contours", image);
}

请添加图片描述
使用椭圆去逼近

void Advance::approx_contours2(Mat &image) {
	Mat dst;
	GaussianBlur(image, dst, Size(3, 3), 0);
	Mat gray;
	cvtColor(dst, gray, COLOR_BGR2GRAY);

	Mat binary;
	threshold(gray, binary, 0, 255, THRESH_BINARY | THRESH_OTSU);
	imshow("binary", binary);

	vector<vector<Point>> contours;
	vector<Vec4i> hirearchy;
	findContours(binary, contours, hirearchy, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);
	//drawContours(image, contours, 0, Scalar(0, 255, 0), 2);

	RotatedRect rrt = fitEllipse(contours[0]);
	ellipse(image, rrt, Scalar(255, 0, 0), 2);

	imshow("approx contours", image);
}

OpenCV4 图像处理与视频分析实战教程 笔记_第12张图片

36 霍夫直线检测

void Advance::hough_lines(Mat &image) {
	Mat dst;
	GaussianBlur(image, dst, Size(3, 3), 0);
	Mat gray;
	cvtColor(dst, gray, COLOR_BGR2GRAY);

	Mat binary;
	threshold(gray, binary, 0, 255, THRESH_BINARY | THRESH_OTSU);
	imshow("binary", binary);
	 
	// 霍夫直线检测
	vector<Vec3f> lines;
	HoughLines(binary, lines, 1, CV_PI / 180.0, 250, 0, 0);

	Point pt1, pt2;
	for (size_t i = 0; i < lines.size(); ++i) {
		float rho = lines[i][0]; // 距离
		float theta = lines[i][1]; //角度
		float acc = lines[i][2]; // 累加值
		

		double a = cos(theta);
		double b = sin(theta);
		double x0 = a * rho, y0 = b * rho;
		pt1.x = cvRound(x0 + 1000 * (-b));
		pt1.y = cvRound(y0 + 1000 * a);
		pt2.x = cvRound(x0 - 1000 * (-b));
		pt2.y = cvRound(y0 - 1000 * a);
		int angle = round(theta / CV_PI * 180);

		if (angle > 90) {
			line(image, pt1, pt2, Scalar(0, 0, 255), 2, 8, 0);
		}
		else {
			line(image, pt1, pt2, Scalar(0, 255, 0), 2, 8, 0);
		}
		printf("rho: %.2f, theta: %.2f, acc: %.2f, angle: %d\n", rho, theta, acc, angle);

	}
	imshow("hough lines", image);

}

OpenCV4 图像处理与视频分析实战教程 笔记_第13张图片

37 霍夫直线检测2

void Advance::hough_linesp(Mat &image) {
	Mat binary;
	Canny(image, binary, 80, 160, 3, false);
	imshow("canny", binary);

	vector<Vec4i> lines;
	HoughLinesP(binary, lines, 1, CV_PI / 180, 80, 200, 10);
	Mat result = Mat::zeros(image.size(), image.type());
	for (int i = 0; i < lines.size(); ++i) {
		line(result, Point(lines[i][0], lines[i][1]), Point(lines[i][2], lines[i][3]), Scalar(0, 255, 0), 1);
	}
	imshow("hough linesp demo", result);
}

OpenCV4 图像处理与视频分析实战教程 笔记_第14张图片

38. 霍夫圆检测

霍夫类型算法对噪声很敏感的,所以使用前需要先进行高斯模糊

void Advance::hough_circle(Mat &image) {
	Mat gray, binary;
	cvtColor(image, gray, COLOR_BGR2GRAY);
	GaussianBlur(gray, gray, Size(9, 9), 2, 2);
	imshow("gray", gray);

	vector<Vec3f> circles;
	int min_dis = 20, min_r = 10, max_r = 50;
	HoughCircles(gray, circles, HOUGH_GRADIENT, 2, min_dis, 100, 100, min_r, max_r);
	for (int t = 0; t < circles.size(); ++t) {
		Point centre(circles[t][0], circles[t][1]);
		double radius = round(circles[t][2]);
		circle(image, centre, radius, Scalar(0, 255, 0), 2);
	}
	imshow("hough circle", image);
}

有高斯模糊

没有高斯模糊

39. 图像形态学操作

膨胀和腐蚀

void Advance::erode_dilate(Mat &image) {
	Mat gray, binary;
	cvtColor(image, gray, COLOR_BGR2GRAY);
	threshold(gray, binary, 0, 255, THRESH_BINARY | THRESH_OTSU);
	Mat dst1, dst2;
	// 腐蚀
	Mat kernel = getStructuringElement(MORPH_RECT, Size(3, 3), Point(-1, -1));
	erode(binary, dst1, kernel);
	imshow("erode", dst1);
	// 膨胀
	dilate(binary, dst2, kernel);
	imshow("dilate", dst2);
}

OpenCV4 图像处理与视频分析实战教程 笔记_第15张图片

40. 图像的开闭

void Advance::open_close(Mat &image) {
	// 开闭
	Mat gray, binary;
	cvtColor(image, gray, COLOR_BGR2GRAY);
	threshold(gray, binary, 0, 255, THRESH_BINARY | THRESH_OTSU);
	Mat dst1, dst2;
	// 闭操作 先膨胀后腐蚀,去掉黑色的小东西
	//Mat kernel = getStructuringElement(MORPH_ELLIPSE, Size(25, 25), Point(-1, -1));
	//morphologyEx(binary, dst1, MORPH_CLOSE, kernel, Point(-1, -1), 1);
	//imshow("open", dst1);

	// 开操作,先腐蚀后膨胀, 去掉白色(前景, OpenCV所有形态学操作,白是前景,黑色背景)的小东西
	Mat kernel1 = getStructuringElement(MORPH_RECT, Size(30, 1), Point(-1, -1));
	morphologyEx(binary, dst2, MORPH_OPEN, kernel1, Point(-1, -1));
	imshow("open", dst2);

}

闭操作:去掉黑点
OpenCV4 图像处理与视频分析实战教程 笔记_第16张图片
开操作:去掉白点,保留横线
OpenCV4 图像处理与视频分析实战教程 笔记_第17张图片

41. 形态学梯度

基本梯度 – 膨胀减去腐蚀之后的结果
内梯度 – 原图减去腐蚀后结果
外梯度 – 膨胀减去原图后结果

void Advance::morph_gradient(Mat &image) {
	Mat gray;
	cvtColor(image, gray, COLOR_BGR2GRAY);

	Mat kernel = getStructuringElement(MORPH_RECT, Size(3, 3), Point(-1, -1));

	
	Mat basic_grad;
	// 基本梯度 -- 膨胀减去腐蚀之后的结果
	morphologyEx(gray, basic_grad, MORPH_GRADIENT, kernel, Point(-1, -1));
	imshow("basic gradient", basic_grad);

	// 内梯度 -- 原图减去腐蚀后结果
	Mat dst1, inner_grad;
	morphologyEx(gray, dst1, MORPH_ERODE, kernel);
	subtract(gray, dst1, inner_grad);
	imshow("inner grad", inner_grad);

	// 外梯度 -- 膨胀减去原图后结果
	Mat dst2, outter_grad;
	morphologyEx(gray, dst2, MORPH_DILATE, kernel);
	subtract(dst2, gray, outter_grad);
	imshow("outter grad", outter_grad);

}

42. 更多形态学操作

// 顶帽: 原图减去开操作之后的结果

void Advance::other_morph(Mat &image) {
	Mat gray, binary;
	cvtColor(image, gray, COLOR_BGR2GRAY);
	threshold(gray, binary, 0, 255, THRESH_BINARY_INV | THRESH_OTSU);
	imshow("binary", binary);

	// 顶帽: 原图减去开操作之后的结果
	Mat kernel = getStructuringElement(MORPH_ELLIPSE, Size(25, 25));
	Mat tophat, open;
	morphologyEx(binary, tophat, MORPH_TOPHAT, kernel);
	morphologyEx(binary, open, MORPH_OPEN, kernel, Point(-1, -1));
	imshow("open", open);
	imshow("tophat", tophat);

}

OpenCV4 图像处理与视频分析实战教程 笔记_第18张图片
// 黑帽:闭操作之后结果减去原图

void Advance::other_morph(Mat &image) {
	Mat gray, binary;
	cvtColor(image, gray, COLOR_BGR2GRAY);
	threshold(gray, binary, 0, 255, THRESH_BINARY | THRESH_OTSU);
	imshow("binary", binary);

	// 黑帽:闭操作之后结果减去原图
	Mat kernel = getStructuringElement(MORPH_ELLIPSE, Size(25, 25));
	Mat blackhat, close;
	morphologyEx(binary, blackhat, MORPH_BLACKHAT, kernel);
	morphologyEx(binary, close, MORPH_CLOSE, kernel, Point(-1, -1));
	imshow("close", close);
	imshow("blackhat", blackhat);

}

OpenCV4 图像处理与视频分析实战教程 笔记_第19张图片
hit and miss

void Advance::other_morph(Mat &image) {
	Mat gray, binary;
	cvtColor(image, gray, COLOR_BGR2GRAY);
	threshold(gray, binary, 0, 255, THRESH_BINARY | THRESH_OTSU);
	imshow("binary", binary);

	// hit and miss
	Mat kernel = getStructuringElement(MORPH_CROSS, Size(25, 25));
	Mat hitmiss;
	morphologyEx(binary, hitmiss, MORPH_HITMISS, kernel);
	imshow("hitmiss", hitmiss);
	

}

OpenCV4 图像处理与视频分析实战教程 笔记_第20张图片

43. 综合练习 找出卫星图岛屿轮廓

void Advance::image_process_demo(Mat &image) {
	Mat gray;
	cvtColor(image, gray, COLOR_BGR2GRAY);
	Mat blur;
	GaussianBlur(gray, blur, Size(3, 3), 0);
	Mat binary;
	// 二值化
	threshold(gray, binary, 0, 255, THRESH_BINARY | THRESH_OTSU);
	imshow("binary", binary);
	// 闭操作,用于填充最大的白色轮廓
	Mat morph;
	Mat kernel = getStructuringElement(MORPH_RECT, Size(15, 15), Point(-1, -1));
	morphologyEx(binary, morph, MORPH_CLOSE, kernel);
	imshow("morph", morph);

	vector<vector<Point>> contours;
	vector<Vec4i> hirerachy;
	findContours(morph, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);

	Mat output = image.clone();
	double max_area = 0.;
	size_t max_index;
	for (size_t i = 0; i < contours.size(); ++i) {
		double area = contourArea(contours[i]);
		printf("index: %d, area: %.1f\n", i, area);
		if (area > max_area) {
			max_index = i;
			max_area = area;
		}
		drawContours(output, contours, i, Scalar(0, 255, 0), 2);
	}
	Mat result = Mat::zeros(image.size(), image.type());
	drawContours(result, contours, max_index, Scalar(0, 0, 255), 2);
	
	Mat pts;
	// 多边形逼近
	approxPolyDP(contours[max_index], pts, 4, true);
	for (int i = 0; i < pts.rows; ++i) {
		Vec2i pt = pts.at<Vec2i>(i, 0);
		circle(result, Point(pt[0], pt[1]), 2, Scalar(0, 255, 0), 2, 8, 0);
	}

	printf("max index: %d", max_index);
	imshow("output", output);
	imshow("result", result);
}

44. 视频读写api

读取一个视频信息并保存

void Advance::video_capture() {
	VideoCapture capture("D:/images/bike.avi");
	if (!capture.isOpened()) {
		printf("video is not opened");
		return;
	}
	namedWindow("frame", WINDOW_AUTOSIZE);

	int height = capture.get(CAP_PROP_FRAME_HEIGHT);
	int width = capture.get(CAP_PROP_FRAME_WIDTH);
	int fps = capture.get(CAP_PROP_FPS);
	int type = capture.get(CAP_PROP_FOURCC);
	printf("height: %d, width: %d, fps: %d", height, width, fps);

	VideoWriter writer("D:/test.mp4", type, fps, Size(width, height), true);
	   	 
	while (true) {
		char c = waitKey(50);
		if (c == 27) {
			break;
		}
		Mat frame;
		bool ret = capture.read(frame);
		if (!ret) {
			break;
		}
		writer.write(frame);
		imshow("frame", frame);
	}

	capture.release();
	writer.release();
	destroyAllWindows();
}

45. 色彩空间转换

使用色彩空间转换进行绿幕抠图

void Advance::color_space() {
	VideoCapture capture("D:/images/01.mp4");

	while (true) {
		char c = waitKey(50);
		if (c == 27) {
			break;
		}
		Mat frame, hsv, lab;
		bool ret = capture.read(frame);

		if (!ret) {
			break;
		}
		cvtColor(frame, hsv, COLOR_BGR2HSV);
		//cvtColor(frame, lab, COLOR_BGR2Lab);
		//imshow("hsv", hsv);
		//imshow("lab", lab);
		
		Mat mask,dst;
		inRange(hsv, Scalar(35, 43, 46), Scalar(77, 255, 255), mask);
		//imshow("mask", mask);
		bitwise_not(mask, mask);
		bitwise_and(frame, frame, dst, mask);
		imshow("front", dst);

	}
}

OpenCV4 图像处理与视频分析实战教程 笔记_第21张图片

46. 直方图的反向投影

void Advance::back_project() {
	Mat src = imread("D:/images/hand.jpg");
	imshow("src", src);
	Mat sample = imread("D:/images/shand.png");
	imshow("sample", sample);
	
	Mat hsv;
	cvtColor(src, hsv, COLOR_BGR2HSV);
	
	int hbins = 48, s_bins = 48;
	int hist_size[] = { hbins, s_bins };
	int channels[] = { 0, 1 };
	Mat roi_hist;

	float h_ranges[] = { 0, 180 };
	float s_ranges[] = { 0, 255 };
	const float* ranges[] = { h_ranges, s_ranges };

	calcHist(&hsv, 1, channels, Mat(), roi_hist, 2, hist_size, ranges, true, false);
	normalize(roi_hist, roi_hist, 0, 255, NORM_MINMAX);
	MatND backproj;

	calcBackProject(&hsv, 1, channels, roi_hist, backproj, ranges, 1.0);
	imshow("back projection demo", backproj);

}

OpenCV4 图像处理与视频分析实战教程 笔记_第22张图片

47. Harris角点检测

void Advance::harris_corner() {
	VideoCapture capture("D:/images/bike.avi");

	while (true) {
		if (!capture.isOpened()) {
			return;
		}

		int n = waitKey(50);
		if (n == 27) {
			break;
		}

		Mat frame;
		bool ret = capture.read(frame);
		if (!ret) {
			break;
		}

		Mat gray;
		cvtColor(frame, gray, COLOR_BGR2GRAY);
		Mat dst;
		double k = 0.04;
		int block_size = 2;
		int ksize = 3;
		cornerHarris(gray, dst, block_size, ksize, k);
		Mat dst_norm = Mat::zeros(frame.size(), frame.type());
		normalize(dst, dst_norm, 0, 255, NORM_MINMAX, -1, Mat());
		convertScaleAbs(dst_norm, dst_norm);

		RNG rng(143);
		for (int row = 0; row < frame.rows; ++row) {
			for (int col = 0; col < frame.cols; ++col) {
				int rsp = dst_norm.at<uchar>(row, col);
				if (rsp > 150) {
					int b = rng.uniform(0, 255);
					int g = rng.uniform(0, 255);
					int r = rng.uniform(0, 255);
					circle(frame, Point(col, row), 3, Scalar(b, g, r));
				}
			}
		}
		imshow("harris corner", frame);
	}
}

在这里插入图片描述

48. shitomas角点检测

void Advance::shitomas_corner_detector() {
	// shitomas脚点检测
	VideoCapture capture("D:/images/bike.avi");

	while (true) {
		if (!capture.isOpened()) {
			return;
		}
		int key = waitKey(50);
		if (key == 27) {
			break;
		}
		Mat frame;
		bool ret = capture.read(frame);
		if (!ret) {
			break;
		}
		Mat gray;
		cvtColor(frame, gray, COLOR_BGR2GRAY);
		vector<Point2f> corners;
		RNG rng(123);
		// qualty_level = 0.01代表response小于10的都过滤了
		double qualty_level = 0.01;
		goodFeaturesToTrack(gray, corners, 50, 0.01, 3, Mat());
		Mat shitomas = frame.clone();
		for (size_t i = 0; i < corners.size(); ++i) {
			int b = rng.uniform(0, 255);
			int g = rng.uniform(0, 255);
			int r = rng.uniform(0, 255);
			circle(frame, corners[i], 3, Scalar(b, g, r));
		}
		imshow("frame", frame);
		imshow("shitomas", shitomas);	   		 	  	  	
	}
}

OpenCV4 图像处理与视频分析实战教程 笔记_第23张图片

49. 基于颜色对象的跟踪

本小节学习的重点:要进行颜色的提取,必须先转换到hsv的色彩空间上。

void Advance::color_trace() {
	VideoCapture capture("D:/images/blackboard.mp4");
	
	if (!capture.isOpened()) {
		return;
	}

	while (true)
	{
		int key = waitKey(50);
		if (key == 27) {
			break;
		}
		Mat frame;
		bool ret = capture.read(frame);
		if (!ret) {
			break;
		}
		Mat hsv, dst;
		cvtColor(frame, hsv, COLOR_BGR2HSV);
		// 0-10 43-255 46-255
		inRange(hsv, Scalar(0, 43, 46), Scalar(10, 255, 255), dst);
		imshow("frame", dst);
		// 形态学操作
		Mat morph;
		Mat se = getStructuringElement(MORPH_RECT, Size(8, 8));
		morphologyEx(dst, morph, MORPH_OPEN, se);
		imshow("morph", morph);
		// 查找轮廓contours
		vector<vector<Point>> contours;
		vector<Vec4i> hirearchy;
		findContours(morph, contours, hirearchy, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);

		double max_area = 0;
		size_t contour_index = -1;
		for (size_t t = 0; t < contours.size(); ++t) {
			double area = contourArea(contours[t]);
			if (area > max_area) {
				contour_index = t;
				max_area = area;
			}
		}
		printf("max area: %.1f\n", max_area);
		// 拟合
		if (contour_index >= 0) {
			RotatedRect rrt = minAreaRect(contours[contour_index]);
			ellipse(frame, rrt, Scalar(0, 255, 0), 2);
			circle(frame, rrt.center, 4, Scalar(255, 0, 0), 2);
		}
		imshow("color_trace", frame);
	}
}

OpenCV4 图像处理与视频分析实战教程 笔记_第24张图片

50. 背景分析

void Advance::bg_extraction() {
	VideoCapture capture("D:/images/blackboard.mp4");

	if (!capture.isOpened()) {
		return;
	}
	auto pMOG2 = createBackgroundSubtractorMOG2(500, 1000, false);

	while (true)
	{
		int key = waitKey(50);
		if (key == 27) {
			break;
		}
		Mat frame;
		bool ret = capture.read(frame);
		if (!ret) {
			break;
		}
		Mat mask, bg_image;
		pMOG2->apply(frame, mask);
		pMOG2->getBackgroundImage(bg_image);

		Mat morph;
		Mat kernel = getStructuringElement(MORPH_RECT, Size(8, 8));
		morphologyEx(mask, morph, MORPH_OPEN, kernel);
		imshow("morph", morph);
		imshow("backgroud", bg_image);

	}
}

OpenCV4 图像处理与视频分析实战教程 笔记_第25张图片

51. 光流法

void Advance::optical_analysis() {
	VideoCapture capture("D:/images/bike.avi");

	if (!capture.isOpened()) {
		return;
	}
	
	namedWindow("frame", WINDOW_AUTOSIZE);
	Mat old_frame, old_gray;
	capture.read(old_frame);
	cvtColor(old_frame, old_gray, COLOR_BGR2GRAY);
	vector<Point2f> feature_pts;
	double quality_level = 0.01;
	// shitomas角点检测
	goodFeaturesToTrack(old_gray, feature_pts, 200, quality_level, 3, Mat(), 3, false);

	vector<uchar> status;
	vector<float> err;
	Mat frame, gray;
	vector<Point2f> pts[2];
	pts[0].insert(pts[0].end(), feature_pts.begin(), feature_pts.end());
	TermCriteria criteria(TermCriteria::COUNT + TermCriteria::EPS, 10, 0.01);
	RNG rng(123);
	
	while (true)
	{
		int key = waitKey(50);
		if (key == 27) {
			break;
		}
		bool ret = capture.read(frame);
		if (!ret) {
			break;
		}

		capture.read(frame);
		cvtColor(frame, gray, COLOR_BGR2GRAY);
		// 光流分析
		calcOpticalFlowPyrLK(old_gray, gray, pts[0], pts[1], status, err, Size(21, 21), 3, criteria, 0);
		size_t i = 0, k = 0;
		for (i = 0; i < pts[1].size(); ++i) {
			if (status[i]) {
				pts[0][k] = pts[0][i];
				pts[1][k++] = pts[1][i];
				int b = rng.uniform(0, 255);
				int g = rng.uniform(0, 255);
				int r = rng.uniform(0, 255);
				circle(frame, pts[1][i], 2, Scalar(b, g, r), 2, 8, 0);
				line(frame, pts[0][i], pts[1][i], Scalar(b, g, r), 2, 8, 0);
			}
		}

		pts[0].resize(k);
		pts[1].resize(k);
		imshow("KLT-demo", frame);
		std::swap(pts[0], pts[1]);
		cv::swap(old_gray, gray);
	}
}

OpenCV4 图像处理与视频分析实战教程 笔记_第26张图片

55. 基于均值迁移的视频分析

void Advance::mean_analysis() {
	VideoCapture capture("D:/images/blackboard.mp4");
	if (!capture.isOpened()) {
		printf("could not open the camera...\n");
	}
	namedWindow("frame", WINDOW_AUTOSIZE);
	Mat frame, hsv, hue, mask, hist, backproj;
	capture.read(frame);

	bool init = false;
	Rect trackWindow;

	int hsize = 16;
	float hranges[] = { 0,180 };
	const float* ranges = hranges;
	
	Rect selection = selectROI("MeanShift Demo", frame, true, false);
	while (true) {
		bool ret = capture.read(frame);
		if (!ret) {
			break;
		}
		cvtColor(frame, hsv, COLOR_BGR2HSV);
		inRange(hsv, Scalar(156, 43, 46), Scalar(180, 255, 255), mask);

		int ch[] = { 0, 0 };
		hue.create(hsv.size(), hsv.depth());
		mixChannels(&hsv, 1, &hue, 1, ch, 1);


		if (init) {
			Mat roi(hue, selection), maskroi(mask, selection);
			calcHist(&roi, 1, 0, maskroi, hist, 1, &hsize, &ranges);
			normalize(hist, hist, 0, 255, NORM_MINMAX);
			trackWindow = selection;
			init = false;
		}
		// ms
		calcBackProject(&hue, 1, 0, hist, backproj, &ranges);
		backproj &= mask;
		meanShift(backproj, trackWindow, TermCriteria(TermCriteria::COUNT | TermCriteria::EPS, 10, 1));
		rectangle(frame, trackWindow, Scalar(0, 0, 255), 3, LINE_AA);
		imshow("MeanShift Demo", frame);
		char c = waitKey(1);
		if (c == 27) {
			break;
		}
	}

}

你可能感兴趣的:(图像处理,音视频,计算机视觉)