通过定义代码来按需⽣成任意复杂度的块,我们可以通过简洁的代码实现复杂的神经⽹络。
import torch
from torch import nn
from torch.nn import functional as F
net1 = nn.Sequential(nn.Linear(10,20),
nn.ReLU(),
nn.Linear(20,3))
print(net1)
"""
输出结果:
Sequential(
(0): Linear(in_features=10, out_features=20, bias=True)
(1): ReLU()
(2): Linear(in_features=20, out_features=3, bias=True)
)
"""
这种方式直接在Sequential中按顺序添加层,每一层没有名字只有索引
X = torch.rand(2, 10)
print(X)
"""
输出结果:
tensor([[0.7477, 0.1882, 0.4906, 0.2918, 0.1371, 0.1348, 0.5376, 0.3913, 0.8976,0.7175],
[0.3601, 0.7126, 0.7465, 0.7667, 0.7281, 0.0142, 0.1097, 0.7086, 0.0304,0.1591]])
"""
print('net1.__call__(X):\n',net1.__call__(X))
print('net1(X):\n',net1(X))
"""
通过net(X)调⽤模型来获得输出,实际上是net1.__call__(X)的简写。
输出结果:
net1.__call__(X):
tensor([[ 0.3241, -0.1625, -0.0823],
[ 0.4224, -0.1465, -0.0354]], grad_fn=)
net1(X):
tensor([[ 0.3241, -0.1625, -0.0823],
[ 0.4224, -0.1465, -0.0354]], grad_fn=)
"""
1.通过OrderedDict来建立有序字典,为每一个层添加名字
from collections import OrderedDict
net2 = nn.Sequential(OrderedDict(Line1 = nn.Linear(10,20),
Relu1 = nn.ReLU(),
Line2 = nn.Linear(20,3)))
print(net2)
"""
输出结果:
Sequential(
(Line1): Linear(in_features=10, out_features=20, bias=True)
(Relu1): ReLU()
(Line2): Linear(in_features=20, out_features=3, bias=True)
)
"""
2.通过add_module为每一个层添加名字
net3 = nn.Sequential()
net3.add_module('Line1',nn.Linear(10,20))
net3.add_module('Relu',nn.ReLU())
net3.add_module('Line2',nn.Linear(20,3))
print(net3)
"""
Sequential(
(Line1): Linear(in_features=10, out_features=20, bias=True)
(Relu): ReLU()
(Line2): Linear(in_features=20, out_features=3, bias=True)
)
"""
通过索引访问模型的参数
print(net1[0].bias.data)
print(net2[0].bias.data)
print(net3[0].bias.data)
"""
输出结果:
tensor([-0.2356, -0.0435, -0.0970, -0.0823, -0.1362, 0.1233, -0.1198, -0.0274,
0.0861, 0.1723, -0.2495, 0.1927, 0.2249, -0.0905, -0.2832, -0.0454,
-0.2958, -0.1017, 0.0330, -0.2923])
tensor([-0.1373, 0.0859, -0.2827, -0.0146, -0.1069, 0.2276, -0.0155, -0.0095,
0.2664, 0.2199, 0.2635, -0.2366, 0.1355, 0.2475, -0.2095, -0.1829,
0.1811, -0.3021, 0.1595, 0.0335])
tensor([-0.2459, -0.2042, 0.0848, 0.2981, 0.0891, -0.2158, 0.0962, -0.0329,
-0.1477, 0.1510, -0.0888, 0.1661, 0.3087, 0.1682, -0.1890, -0.1810,
0.0902, 0.2852, 0.1354, 0.1661])
"""
但是就算给模型的层命名,也不能通过名字访问参数
print(net2['Line1'].bias.data)
"""
TypeError: 'str' object cannot be interpreted as an integer
"""
本文仅仅简单介绍了Sequential的使用,Sequential除了本身可以用来定义模型之外,它还可以包装层,或者把几个层包装起来像一个块以供构建更复杂的模型