- RabbitMQ高级特性-消费端自定义监听
七夜丶雪
中间件分布式RabbitMQ消息队列RabbitMQRabbitMQ高级特性消费端自定义监听
消费端自定义监听在之前的代码演示中,consumer进行消费时,都是使用while循环进行消息消费,然后使用consumer.nextDelivery()方法获取下一条消息但是在实际工作中,使用自定义的Consumer更加的方便,解耦性也更加的强,实现自定义的Consumer可以实现Consumer接口,或者更常用的是继承默认的DefaultConsumer代码演示自定义消费者(替换Queuein
- 使用Sui索引框架支持自定义数据导入
Sui_Network
数据库web3大数据区块链网络云计算
Sui索引框架通过强大的数据导入框架提供对Sui链上数据的定制化访问。它允许任何相关软件,无论是在链上还是链下运行,收集原始链上数据和派生数据。利用Sui索引框架创建定制的数据流,开发者可以轻松构建响应链上事件的软件和产品。链上数据流的强大之处区块链数据结构旨在确保交易的完整性,这通常意味着它们没有针对整个历史的随机数据访问进行优化。然而,使用Sui索引框架构建的定制化数据流克服了这一限制,使开发
- Python从0到100(八十三):神经网络-使用残差网络RESNET识别手写数字
是Dream呀
python神经网络网络
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 100天精通Python(基础篇)——第19天:异常类型大全、异常处理介绍
袁袁袁袁满
100天精通Pythonpython开发语言后端mce异常
目录1.异常的概念2.异常类型1)Python内置异常2)requests爬虫模块内置异常类3)自定义异常2.捕获异常1)简单的捕获异常语法2)错误类型捕获3)异常捕获完整语法3.异常的传递4.抛出raise异常1)应用场景2)抛出异常1.异常的概念程序在运行时,如果Python解释器遇到到一个错误,会停止程序的执行,并且提示一些错误信息,这就是异常程序停止执行并且提示错误信息这个动作,我们通常称
- EVE-NG桥接虚拟网卡实现与虚拟机通讯
Meaauf
锐捷服务器网络运维EVE-NG
一、知识补充1、VMware网络连接在VM中,给我们提供了以下几种连接网络的模式桥接模式:直接联机物理网络NAT模式:用于共享主机的IP地址仅主机模式:与主机共享的专用网络自定义:特定虚拟网络LAN区段特别注意的是,在自定义网络中,分别可以添加不同的网卡,而前三张网卡比较特殊VMnet0对应的是桥接模式Vmnet1对应的是仅主机模式Vmnet2对应的是NAT模式桥接模式通过设置主机的VMwareN
- 计算机网络基础知识点简记
UV Youth
计算机网络网络
OSI七层网络模型TCP/IP四层网络模型模型图解IP地址与子网划分基础概念IPV4与IPV6的区别子网划分的目的子网掩码的使用CIDR表示法路由器与交换机TCP与UDP协议HTTP与HTTPS协议DNS域名系统网络攻击与防御机制网络安全协议网络性能优化云计算基础
- 计算机网络 (46)简单网络管理协议SNMP
IT 青年
一研为定计算机网络
前言简单网络管理协议(SNMP,SimpleNetworkManagementProtocol)是一种用于在计算机网络中管理网络节点的标准协议。一、概述SNMP是基于TCP/IP五层协议中的应用层协议,它使网络管理员能够管理网络效能,发现并解决网络问题以及规划网络增长。SNMP由互联网工程任务组(IETF)定义,确保了不同厂商设备之间的互操作性。由于其简单可靠,提供了一种监控和管理网络设备的系统方
- JAVA:MyBatis 缓存机制详解的技术指南
拾荒的小海螺
JAVAjavamybatis缓存
1、简述MyBatis是Java开发中常用的持久层框架之一,通过面向对象的方式操作数据库。为了提高系统性能,MyBatis提供了两级缓存机制:一级缓存(本地缓存)和二级缓存(全局缓存)。本文将详细讲解MyBatis缓存机制的使用原理、配置方法,并通过示例展示如何合理地使用缓存优化数据访问效率。2、基础原理2.1一级缓存作用范围:一级缓存是基于SqlSession级别的缓存,即在同一个SqlSess
- 知识图谱中的word2vec 技术是做什么的?
kcarly
知识图谱入门知识图谱word2vec人工智能
Word2Vec是一种将单词转换为向量表示的技术,由Google在2013年提出。这项技术的核心思想是通过大规模文本数据训练神经网络模型,从而将单词映射到低维稠密的向量空间中。这些向量能够捕捉到单词之间的语义和语法关系,使得相似或相关的单词在向量空间中彼此靠近。Word2Vec的基本原理Word2Vec主要包括两种训练模型:CBOW(ContinuousBagofWords)和Skip-gram。
- Containerd 代理插件的作用与原理
1.什么是代理插件?代理插件(ProxyPlugins)是Containerd提供的一种灵活的插件集成机制,允许通过gRPC连接外部服务,并将这些外部服务无缝集成到Containerd的插件系统中。2.代理插件的类型Containerd支持多种类型的代理插件:插件类型功能描述应用场景快照插件(SnapshotPlugin)管理容器文件系统快照自定义存储后端、特殊文件系统管理内容插件(Content
- 名词解析:IP,掩码(netmask),网关(gateway),DNS?
骆梦晴
tcp/ipgateway网络
IP是32位二进制数据,通常以十进制表示,并以“.”分隔。IP地址是一种逻辑地地址,用来标识网络中一个个主机,IP有唯一性,即每台机器的IP在全世界是唯一的。netmask即子网掩码,也可以称为网络掩码,主要用于从IP地址中提取网络号或主机号。子网掩码不是单独存在的,它用于计算一个ip地址所归属的网络地址以及主机地址。网关(Gateway)又称网间连接器、协议转换器。网关在网络层以上实现网络互连,
- 玩转至轻云大数据平台-docker部署篇
fanciNate454
大数据docker
产品介绍至轻云是一款超轻量级、企业级大数据计算平台,基于Spark生态打造。一键部署,开箱即用。快速实现大数据离线ETL、Spark计算、实时计算、可视化调度、自定义接口、数据大屏以及自定义表单等多种功能,为企业提供高效便捷的大数据解决方案。至轻云有什么特点呢?又能怎么玩呢?产品特点开源轻量化云原生架构:兼容云原生架构,支持Docker、Rancher平台的快速部署。国内镜像下载:可直接从阿里云镜
- 中科曙光C/C++研发工程师二面
TrustZone_
ARM/Linux嵌入式面试c语言c++开发语言
自我介绍;针对项目:CNN模型、损失函数、评价指标、改进方向、计算加速;CNN模型CNN,即卷积神经网络,是一种专门用于处理具有类似网格结构数据的深度学习模型。它通过卷积层和池化层提取图像特征,并通过全连接层进行分类或回归预测。CNN在图像识别、目标检测和图像生成等领域取得了巨大成功。具体来说,CNN的模型结构包括输入层、卷积层、激活函数、池化层、全连接层和输出层。输入层接收图像数据,并将其转换为
- 开发经验及方法导读
盒子君~
#算法机器人系统架构
文章目录前言一、搭建工程开发环境专题三方库的调用方法二、代码程序设计专题1、C++开发知识树的阶段2、程序设计Kiss原则3、数据结构与语法规范4、CPP代码检查工具5、架构模式设计层(设计模式)6、代码重构7、代码设计模式--如何提高代码的运行效率、可读性、可维护性、健壮性?8、【C++RAII机制】将资源用类进行封装起来,做到资源创建即完成初始化,使用完资源即自动销毁9、源代码封装成库Lib的
- uniapp 地图(map)加载大量自定义坐标卡顿优化
炫爱小七
uni-app
事情原因是做项目遇到一个需求,地图上定位描点,但是由于数据量暴增,直接导致地图卡死。所以想到的解决方案是,只加载当前屏幕中的地图描点信息。实现方法是使用regionChange方法但是还有问题就是万一缩放到又要加载全部数据的定位一样会卡死我的解决办法就是优化同屏显示数量,我这里是默认最多显示200个exportdefault{data(){return{latitude:39.909,longit
- 改进yolov8工业缺陷检测+swin+transformer
qq1309399183
计算机视觉实战项目集合YOLOtransformer深度学习人工智能计算机视觉机器学习神经网络
使用NEU-DET数据集进行缺陷检测的YOLOv8改进模型应用详解在现代工业生产过程中,质量控制是至关重要的一个环节。随着机器视觉技术和人工智能算法的发展,基于深度学习的方法已经成为自动化缺陷检测的重要工具。本篇将介绍一种基于NEU-DET数据集,利用YOLOv8及其改进版本(包含坐标注意力机制和SwinTransformer)进行缺陷检测的应用开发过程。我们将详细探讨从数据准备到模型训练,再到最
- 基于 Python 的机器学习模型部署到 Flask Web 应用:从训练到部署的完整指南
m0_74825223
python机器学习flask
目录引言技术栈步骤一:数据预处理步骤二:训练机器学习模型步骤三:创建FlaskWeb应用步骤四:测试Web应用步骤五:模型的保存与加载保存模型加载模型并在Flask中使用步骤六:Web应用的安全性考量示例:简单的输入验证示例:自定义错误处理示例:使用Flask-JWT-Extended进行认证结论参考资料引言在当今数据驱动的时代,机器学习模型已经广泛应用于各行各业,从金融、医疗到教育等领域。然而,
- 改进yolov8缺陷检测+swin+transformer
QQ_1309399183
计算机视觉实战项目集锦YOLOtransformer深度学习人工智能计算机视觉opencv机器学习
使用NEU-DET数据集进行缺陷检测的YOLOv8改进模型应用详解在现代工业生产过程中,质量控制是至关重要的一个环节。随着机器视觉技术和人工智能算法的发展,基于深度学习的方法已经成为自动化缺陷检测的重要工具。本篇将介绍一种基于NEU-DET数据集,利用YOLOv8及其改进版本(包含坐标注意力机制和SwinTransformer)进行缺陷检测的应用开发过程。我们将详细探讨从数据准备到模型训练,再到最
- 【Python】成功解决ValueError: zero-size array to reduction operation minimum which has no identity
高斯小哥
BUG解决方案合集python新手入门学习debug
【Python】成功解决ValueError:zero-sizearraytoreductionoperationminimumwhichhasnoidentity个人主页:高斯小哥高质量专栏:Matplotlib之旅:零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程希望得到您的订阅和支持~创作高质量博文(平均质量分92+),分享更多关于深度学习、PyTorch、
- 曝华为鸿蒙PC有望今年上市;腾讯撤回“微信蓝包”商标注册;荣耀管理层大洗牌,中国区CMO将离职 | 极客头条
极客日报
华为harmonyos微信
「极客头条」——技术人员的新闻圈!CSDN的读者朋友们好,「极客头条」来啦,快来看今天都有哪些值得我们技术人关注的重要新闻吧。整理|苏宓出品|CSDN(ID:CSDNnews)一分钟速览新闻点!赵明离职之后荣耀管理层大洗牌,荣耀中国区CMO将离职曝华为鸿蒙PC正做半公开测试找新Bug,今年有望上市腾讯撤回“微信蓝包”商标注册,马化腾:希望外界不要对“送礼物”功能过度吹捧CNNIC报告称中国有2.4
- 开源AI图像工具—Stable Diffusion
蚂蚁在飞-
人工智能stablediffusion
StableDiffusion是一种基于深度学习的生成式模型,用于图像生成、图像修复和风格转换等任务。它是由StabilityAI和CompVis团队联合开发的。StableDiffusion在生成高质量图像方面表现出色,并且是开源的,可以自由使用和扩展。StableDiffusion的核心技术1.扩散模型(DiffusionModels):•基于概率生成模型。•从噪声中逐步反向生成清晰的图像。•
- 《重生到现代之从零开始的C语言生活》——C语言的数据类型和变量
yttandb
c语言生活
C语言的数据类型和变量数据类型C语言中的数据类新用来描述数据,而类型可以理解为是数据的分类。数据类型可以分为以下几个内置类型字符型整型浮点型布尔类型自定义类型数组结构体-struct枚举-enum联合体-union在下面我们着重讲解内置类型字符型char可以创建一个字符型的变量(变量会在下文进行描述,在这知道即可)整形短整型shortint整形int长整型longint更长的整形longlongi
- Python魔法方法__call__深入详解
图灵学者
python精华python开发语言
目录1、魔法方法__call__初探♂️1.1什么是__call__?1.2基础用法演示1.3自定义行为与参数传递2、实现轻量级装饰器模式️2.1装饰器概念回顾2.2利用__call__构建装饰器2.3深入理解装饰器应用场景3、类实例变身函数调用3.1类似函数的行为模拟3.2动态执行与灵活性提升3.3实战案例:日志记录器4、实现状态机模式4.1状态机概念回顾4.2通过__call__管理状态转换
- 机器学习:scikit-learn 和 Jupyter Notebook(推荐初学者使用google colab)
wyc9999ww
机器学习scikit-learnjupyter人工智能python
对于初学者来说,scikit-learn是一个理想的机器学习入门工具。不仅提供了丰富的算法和功能,还通过一致的API设计,确保能够快速上手并进行各种机器学习任务。通过使用scikit-learn,可以专注于理解和实践机器学习的核心概念,而不必过多担心底层实现细节。所以scikit-learn能轻松实现从数据预处理到模型训练和评估的完整流程。此外在推荐一个适合初学者的深度学习平台工具googleco
- 【深度学习】CrossEntropyLoss需要手动softmax吗?
zz的学习笔记本
深度学习深度学习人工智能
【深度学习】CrossEntropyLoss需要手动softmax吗?问题:CrossEntropyLoss需要手动softmax吗?答案:不需要官方文档代码解释问题:CrossEntropyLoss需要手动softmax吗?之前用pytorch实现自己的网络时,使用CrossEntropyLoss的时候将网路输出经softmax激活层后再计算CrossEntropyLoss。答案:不需要调用了损
- 有趣的python代码实例_Python之路:200个Python有趣的小例子一网打尽
weixin_39845406
有趣的python代码实例
概述博主最近在学习python,看完了一整套学习视频,然后呃呃呃,还是用不太流畅。碰巧在全球最大的同性交友论坛GayHub(呸!是开源代码托管平台Github)上面发现了一个项目,该项目列举了200多个Python小例子,Python基础、Python坑点、Python字符串和正则、Python绘图、Python日期和文件、Web开发、数据科学、机器学习、深度学习、TensorFlow、Pytor
- python调用oracle存储过程传入多参数_精通 Oracle+Python,第 5 部分:存储过程、Python 编程...
weixin_39669133
调用数据库存储过程及其他感兴趣的高级Python编程功能。2010年3月发布对于涉及数据库的软件开发来说,有两种主流开发方法:一种是在应用程序中(对于三层体系结构,也可以是在中间件中)实现所有业务逻辑,另一种是在数据库内部实现所有业务逻辑。本教程不讨论这两种解决方案的优缺点;不过,使用Oracle数据库方法还是会为面向数据库的应用程序带来某些好处。用PL/SQL嵌入所有业务逻辑可大大减少应用程序与
- 迁移学习与RBF神经网络
fanxbl957
人工智能理论与实践迁移学习神经网络人工智能
迁移学习与RBF神经网络一、引言在机器学习和深度学习领域,迁移学习和神经网络都是备受关注的重要技术。迁移学习旨在将从一个或多个源任务中学习到的知识应用到目标任务中,以加快目标任务的学习过程,提高学习效果,尤其在数据稀缺或训练资源有限的情况下展现出显著优势。而RBF(径向基函数)神经网络作为一种经典的神经网络结构,以其独特的函数逼近能力和良好的局部逼近特性,在众多领域取得了出色的性能表现。将迁移学习
- ovs实现lb负载均衡
阿狸的家
OVS云计算负载均衡运维云计算ovs
负载均衡定义负载均衡器的实现原理是通过硬件或软件设备将客户端访问流量根据转发策略分发到多个服务器或设备上,以确保系统的负载均衡。常见的实现方式包括:二层负载均衡:使用虚拟MAC地址方式,根据OSI模型的二层进行负载均衡。四层负载均衡:基于IP+端口的负载均衡,主要分析IP层及TCP/UDP层,实现四层负载均衡。七层负载均衡:从应用层开始,根据虚拟的URL或IP、主机名接收请求,再转向相应
- deepin 23 Preview 运行自定义 exe 的方法
deepin
在deepin23Preview版本中,运行自定义的exe程序可以通过以下步骤实现:一、安装Wine运行器(一)使用linglong格式包的Wine应用如果你已经安装了linglong格式包的Wine程序,在WINE版本处将直接出现选项供你选择使用。需要注意的是:在使用linglong包的Wine应用时,必须先安装至少一个linglong的使用Wine软件包,才会出现该选项。程序识别到的Wine是
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><