yolov5训练步骤及安全帽检测

环境部署问题、训练后无法识别问题都有介绍注意事项

一、说明

  • 系统uname -ar:ubuntu18.0.4(Linux ubuntu 5.4.0-122-generic) 64bit
  • 显卡lspci:GeForce GT 1030
  • nvidia版本:NVIDIA-Linux-x86_64-470.129.06.run (该网址搜索下载:https://www.nvidia.cn/geforce/drivers)
  • cuda版本: cuda_10.2.89_440.33.01_linux.run (历史版本:https://developer.nvidia.com/cuda-toolkit-archive)
  • yolov5: 代码是tag v6.1

二、PC机nvidia显卡(没有忽略用CPU方式)

  1. 禁用 nouveau驱动
    lsmod | grep nouveau
    		禁用:
    		sudo vim /etc/modprobe.d/blacklist.conf
    			blacklist nouveau
    			options nouveau modeset=0
    		
    		sudo update-initramfs -u
    
  2. nvidia驱动安装
    sudo apt install dkms build-essential linux-headers-generic
    	sudo apt-get install -y libc6-i386 lib32stdc++6 lib32gcc1 lib32ncurses5 lib32z1
    	sudo ./NVIDIA-Linux-x86_64-470.129.06.run --dkms --no-opengl-files
    	
    	一定操作,否则会失败
    		在BIOS界面,禁用secure boot(安全模式)
    	
    	(安装失败重装)
    	sudo nvidia-uninstall
    	sudo apt-get remove --purge nvidia*
    
  3. 安装cuda10.2
    A、sudo service lightdm stop
    
    B、如果已安装nvidia驱动,安装时把驱动取消,建议先安装驱动,并且驱动版本大于cuda后缀的440.33.01,否则cuda安装失败)
    		wget https://developer.download.nvidia.com/compute/cuda/10.2/Prod/local_installers/cuda_10.2.89_440.33.01_linux.run
    		sudo sh cuda_10.2.89_440.33.01_linux.run --no-opengl-libs (如果开始安装了nvidia-390.151版本驱动会有问题)
    C、vi ~/.bashrc
    		export PATH="/usr/local/cuda-10.2/bin:$PATH" 
    		export LD_LIBRARY_PATH="/usr/local/cuda-10.2/lib64:$LD_LIBRARY_PATH"
    	
    D、sudo service lightdm start
    
  4. nvidia-smi:失败
    ls /usr/src | grep nvidia  #查看自己安装的nvidia版本,我的是470.129.06
    sudo apt install dkms
    sudo dkms install -m nvidia -v 470.129.06 
    

三、python升级

  1. python3.6–>pyhton3.9 (系统自带3.6)
  2. 安装依赖
    sudo apt-get install libffi-dev zlib1g-dev libbz2-dev libssl-dev liblzma-dev
    
  3. 下载python3.9
    wget https://www.python.org/ftp/python/3.9.0/Python-3.9.0.tgz
    
  4. 编译
    ./configure --with-ssl --enable-optimizations (--with-ssl 参数要加上否则使用中会出错)
    	make
    	sudo make install
    
  5. 设置软连接
    sudo ln -s /usr/local/bin/python3 /usr/bin/python39 #不要修改系统python3软连接,否则一些命令无法使用
    sudo ln -s /usr/local/bin/pip3 /usr/bin/pip3
    

四、pytorch安装

  1. 官网
    https://pytorch.org/get-started/locally/
    
  2. CPU
    pip install torch==1.9.0+cpu torchvision==0.10.0+cpu torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
    如果失败进入https://download.pytorch.org/whl/torch_stable.html 下载对应版本
    
  3. GPU
    pip install torch==1.9.0+cu102 torchvision==0.10.0+cu102 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
    	
    pip3 install torch-1.9.0+cu102-cp39-cp39-linux_x86_64.whl
    pip3 install torchvision-0.10.0+cu102-cp39-cp39-linux_x86_64.whl
    pip3 install torchaudio-0.9.0-cp39-cp39-linux_x86_64.whl
    

五、pip 依赖

absl-py==0.12.0
altgraph==0.17
backcall==0.2.0
backports.lzma==0.0.14
cachetools==4.2.1
certifi==2020.12.5
chardet==4.0.0
charset-normalizer==2.1.0
click==8.1.3
cycler==0.10.0
decorator==5.1.1
docker-pycreds==0.4.0
future==0.18.2
gitdb==4.0.9
GitPython==3.1.27
google-auth==1.28.1
google-auth-oauthlib==0.4.4
GPUtil==1.4.0
grpcio==1.37.0
idna==2.10
importlib-metadata==4.12.0
ipython==7.34.0
jedi==0.18.1
kiwisolver==1.3.1
lxml==4.9.1
Markdown==3.4.1
matplotlib==3.3.4
matplotlib-inline==0.1.3
numpy==1.21.6
oauthlib==3.2.0
opencv-python==4.5.1.48
pandas==1.3.5
parso==0.8.3
pathtools==0.1.2
pexpect==4.8.0
pickleshare==0.7.5
Pillow==9.2.0
promise==2.3
prompt-toolkit==3.0.30
protobuf==3.15.8
psutil==5.9.1
ptyprocess==0.7.0
pyasn1==0.4.8
pyasn1-modules==0.2.8
Pygments==2.12.0
pyparsing==3.0.9
PyQt5==5.15.4
pyqt5-plugins==5.15.4.2.2
PyQt5-Qt5==5.15.2
PyQt5-sip==12.11.0
pyqt5-tools==5.15.4.3.2
PyQtChart==5.15.4
PyQtChart-Qt5==5.15.2
python-dateutil==2.8.2
python-dotenv==0.20.0
pytz==2022.1
PyYAML==6.0
qt5-applications==5.15.2.2.2
qt5-tools==5.15.2.1.2
requests==2.25.1
requests-oauthlib==1.3.1
rsa==4.9
scipy==1.6.1
seaborn==0.11.2
sentry-sdk==1.8.0
setproctitle==1.2.3
shortuuid==1.0.9
six==1.16.0
smmap==5.0.0
tensorboard==2.4.1
tensorboard-plugin-wit==1.8.1
tornado==6.1
tqdm==4.64.0
traitlets==5.3.0
typing-extensions==4.3.0
urllib3==1.26.5
wandb==0.12.21
wcwidth==0.2.5
Werkzeug==1.0.1
wincertstore==0.2
zipp==3.8.1

六、准备数据集

  1. YOLOv5代码
    git clone https://github.com/ultralytics/yolov5
    
  2. 图片资源,用飞桨安全帽资源,已经标注好了
    HelmetDetection包括images(原始图片)和annotations(标注信息xml) 
    下载地址:https://aistudio.baidu.com/aistudio/datasetdetail/50329
    
  3. yolov5中创建目录(资源转成VOC格式)
    helmet_source
    		Annotations  #标注信息xml
    		dataSet_path #
    		images       #原始图片
    		ImageSets    #数据集分类txt文件(自写make_voc_txt.py脚本生成)
    		labels       #voc格式的标签文件(自写make_voc_label.py脚本生成)
    
  4. 注意
    1. 按照上述目录结构训练结果可以检测出图片
    2. 在data中创建的目录训练cls一直是0,检测图片也不识别
    3. 尝试换环境版本,调参数都不行
    4. 最后觉的可能哪里路径有问题
    

七、训练

  1. 将coco.yaml复制一份helmet.yaml修改如下:
    train: helmet_source/dataSet_path/train.txt  # train images (relative to 'path') 118287 images
    val: helmet_source/dataSet_path/val.txt  # val images (relative to 'path') 5000 images
    # test: helmet_source/dataSet_path/test.txt  # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
    
    # Classes
    nc: 2  # number of classes
    names: ['helmet', 'head']  # class names
    
  2. 将models/yolov5s.yaml修改
    nc: 2  # number of classes  改为自己的类别个数
    
  3. 训练指令(我的测试资源和脚本以及官网权重在文中后面有写)
    python39 train.py --img 416 --batch 4 --epochs 100 --data data/helmet.yaml --cfg models/yolov5s.yaml --weights weights/yolov5s.pt --device 0 #--device cpu
    
  4. 说明
    输出:runs/train/exp/weights/best.pt 和 last.pt
    说明:训练100次,效果不太好,500次会好点,当然越多越好
    YOLOv5 训练 ( train.py )、验证 ( val.py )、推理 ( detect.py ) 和导出 ( export.py ) 的正确操作
    

5.训练结果图
yolov5训练步骤及安全帽检测_第1张图片
yolov5训练步骤及安全帽检测_第2张图片
yolov5训练步骤及安全帽检测_第3张图片

八、测试

  1. 检测指令
    python39 detect.py --data data/helmet.yaml --weights runs/train/exp/weights/best.pt --source helmet_test.png #--conf-thres 0.1 --iou-thres 0.9
    
  2. 原始图片和结果

    yolov5训练步骤及安全帽检测_第4张图片

九、资源及脚本

  1. 测试资源下载点击这里下载

  2. 分类脚本 make_voc_txt.py

    import os
    import random
    trainval_percent = 0.1
    train_percent = 0.9
    root_path = 'helmet_source'
    xmlfilepath = '%s/Annotations' % root_path
    txtsavepath = '%s/ImageSets' % root_path
    total_xml = os.listdir(xmlfilepath)
    num = len(total_xml)
    list = range(num)
    tv = int(num * trainval_percent)
    tr = int(tv * train_percent)
    trainval = random.sample(list, tv)
    train = random.sample(trainval, tr)
    ftrainval = open('%s/trainval.txt' % txtsavepath, 'w')
    ftest = open('%s/test.txt' % txtsavepath, 'w')
    ftrain = open('%s/train.txt' % txtsavepath, 'w')
    fval = open('%s/val.txt' % txtsavepath, 'w')
    for i in list:
        name = total_xml[i][:-4] + '\n'
        if i in trainval:
            ftrainval.write(name)
            if i in train:
                ftest.write(name)
            else:
                fval.write(name)
        else:
            ftrain.write(name)
    ftrainval.close()
    ftrain.close()
    fval.close()
    ftest.close()
    
    
  3. 生产yolo需要的标注数据格式make_voc_label.py(同时可以产生标注图片)

    import xml.etree.ElementTree as ET
    import pickle
    import os, cv2
    from os import listdir, getcwd
    from os.path import join
    from tqdm import tqdm
    
    sets = ['train', 'test','val']
    classes = ['helmet', 'head']
    colors = {'helmet': (60, 60, 250), 'head': (250, 60, 60)}
    
    root_path = "helmet_source"
    dataSet_path = "%s/dataSet_path" % root_path
    image_path = "%s/images" % root_path
    Annotations_path = "%s/Annotations" % root_path
    ImageSets_path = "%s/ImageSets" % root_path
    labels_path = "%s/labels" % root_path
    
    def convert(size, box):
        dw = 1. / size[0]
        dh = 1. / size[1]
        x = (box[0] + box[1]) / 2.0 - 1
        y = (box[2] + box[3]) / 2.0 - 1
        w = box[1] - box[0]
        h = box[3] - box[2]
        x = x * dw
        w = w * dw
        y = y * dh
        h = h * dh
        # x_center = (box[0]+box[1])/2.0
        # y_center = (box[2]+box[3])/2.0
        # x = x_center / size[0]
        # y = y_center / size[1]
        
        # w = (box[1] - box[0]) / size[0]
        # h = (box[3] - box[2]) / size[1]
        return (x, y, w, h)
    def convert_annotation(image_id):
        in_file = open('%s/%s.xml' % (Annotations_path, image_id))
        out_file = open('%s/%s.txt' % (labels_path, image_id), 'w')
        im = cv2.imread('%s/%s.png' % (image_path, image_id))
        print('%s/%s.png' % (image_path, image_id))
    	
        tree = ET.parse(in_file)
        root = tree.getroot()
        size = root.find('size')
        w = int(size.find('width').text)
        h = int(size.find('height').text)
        for obj in root.iter('object'):
            difficult = obj.find('difficult').text
            cls = obj.find('name').text
            if cls not in classes or int(difficult) == 1:
                continue
            cls_id = classes.index(cls)
            xmlbox = obj.find('bndbox')
            xmin = xmlbox.find('xmin').text
            xmax = xmlbox.find('xmax').text
            ymin = xmlbox.find('ymin').text
            ymax = xmlbox.find('ymax').text
            b = (float(xmin), float(xmax), float(ymin), float(ymax))
            b1, b2, b3, b4 = b
            # 标注越界修正
            if b2 > w:
                b2 = w
            if b4 > h:
                b4 = h
            b = (b1, b2, b3, b4)
            bb = convert((w, h), b)
            out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
    		
            print(cls, colors[cls], xmin, xmax, ymin, ymax)
            cv2.rectangle(im, (int(xmin), int(ymin)), (int(xmax), int(ymax)), colors[cls])
            cv2.putText(im, cls, (int(xmin), int(ymin) - 3), cv2.FONT_HERSHEY_SIMPLEX, 0.5, colors[cls])
        # cv2.imshow('result', im)
        # cv2.waitKey(0)
        cv2.imwrite('%s/%s_tag.png' % (image_path, image_id), im)
    		
    wd = getcwd()
    print(wd)
    for image_set in sets:
        if not os.path.exists(labels_path):
            os.makedirs(labels_path)
        image_ids = open('%s/%s.txt' % (ImageSets_path, image_set)).read().strip().split()
        list_file = open('%s/%s.txt' % (dataSet_path, image_set), 'w')
        for image_id in image_ids:
            # print(image_id)
            list_file.write('%s/%s.png\n' % (image_path, image_id))
            convert_annotation(image_id)
        list_file.close()
    
  4. 文件重命名分序make_voc_file.py

    import os
    path = "./image"
    filelist = os.listdir(path) #该文件夹下所有的文件(包括文件夹)
    count=0 #从零开始
    for file in filelist:
        print(file)
    for file in filelist:   #遍历所有文件
        Olddir=os.path.join(path,file)   #原来的文件路径
        if os.path.isdir(Olddir):   #如果是文件夹则跳过
            continue
        filename=os.path.splitext(file)[0]   #文件名
        filetype=os.path.splitext(file)[1]   #文件扩展名
        Newdir=os.path.join(path,str(count).zfill(6)+filetype)  #用字符串函数zfill 以0补全所需位数
        os.rename(Olddir,Newdir)#重命名
        count+=1
    

5.下载官方权重(里面有download_weights.sh脚本)

from utils.downloads import attempt_download

models = ['n', 's', 'm', 'l', 'x']
models.extend([x + '6' for x in models])  # add P6 models

for x in models:
	attempt_download(f'yolov5{x}.pt')

附:

1、pip3 install backports.lzma (3.9忽略)
	  sudo vi /usr/local/lib/python3.7/lzma.py
		from _lzma import *
		from _lzma import _encode_filter_properties, _decode_filter_properties
		修改:
		try:
			from _lzma import *
			from _lzma import _encode_filter_properties, _decode_filter_properties
		except ImportError:
			from backports.lzma import *
			from backports.lzma import _encode_filter_properties, _decode_filter_properties
	
2、labelImg使用
		git clone https://github.com/tzutalin/labelImg
		pip3 install lxml
		pyrcc5 -o resources.py resources.qrc , 将Qt文件格式(.qrc)转为Python(.py)格式,将生成的resources.py拷贝到同级的libs目录下
		sudo apt-get install libxcb-xinerama0 (解决 qt.qpa.plugin: Could not load the Qt platform plugin "xcb" in "" even though it was found)
		
3、pip3 运行出错:subprocess.CalledProcessError: Command '('lsb_release', '-a')' returned non-zero exit status 1  
		sudo cp /usr/lib/python3/dist-packages/lsb_release.py /usr/local/lib/python3.7  (3.9忽略)

你可能感兴趣的:(人工智能,深度学习,yolov5,安全帽检测,机器学习)