【回归预测-DELM】基于麻雀算法改进深度学习极限学习机实现数据回归预测附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

个人主页:Matlab科研工作室

个人信条:格物致知。

更多Matlab仿真内容点击

智能优化算法  神经网络预测 雷达通信  无线传感器

信号处理 图像处理 路径规划 元胞自动机 无人机  电力系统

⛄ 内容介绍

1 深度极限学习机

人工神经网络的最大缺点是训练时间太长从而限制其实时应用范围,近年来,极限学习机(Extreme Learning Machine, ELM)的提出使得前馈神经网络的训练时间大大缩短,然而当原始数据混杂入大量噪声变量时,或者当输入数据维度非常高时,极限学习机算法的综合性能会受到很大的影响。深度学习算法的核心是特征映射,它能够摒除原始数据中的噪声,并且当向低维度空间进行映射时,能够很好的起到对数据降维的作用,因此我们思考利用深度学习的优势特性来弥补极限学习机的弱势特性从而改善极限学习机的性能。在本文中,首先介绍了基于自编码器的极限学习机(Auto Encode based Extreme Learning Machine, AE-ELM),它使用第一层自编码网络对输入数据进行降维除噪处理,再使用第二层自编码算法确定ELM输入权值以提升ELM有效性,最后使用最小二乘法确定ELM输出层权值。这种方法主要解决数据维度偏高且含有噪声时的情况,最后实验验证了AE-ELM在噪声数据下很好的提升了算法的性能。其次,详细介绍了基于极限学习机的自编码器(Extreme Learning Machine Auto Encode, ELM-AE),它能够对原始特征进行等维度,高维度,及低维度的特征映射,为ELM在超高维度下的应用奠定了基础。

【回归预测-DELM】基于麻雀算法改进深度学习极限学习机实现数据回归预测附matlab代码_第1张图片

2 麻雀搜索算法

麻雀搜索算法是一种新型的群智能优化算法, 在 2020 年由 Xue 等 [15] 提出,主要是受麻雀的觅食 和反哺食行为启发,具有寻优能力强、收敛速度快的特点。麻雀搜索算法将整个麻雀种群分为三类,即寻找食物的生产者,抢夺食物的加入者和发现危险的警戒者 。生产者和加入者可以相互转化,但各自在 种群中的占比不会发生变化。在模拟实验中,需要使用虚拟麻雀进行食物的 寻找,与其他寻优算法相同,麻雀搜索算法首先需要对麻雀种群与适应度值进行初始化,麻雀种群可 初始化为如下形式,表达式为式(3) 

【回归预测-DELM】基于麻雀算法改进深度学习极限学习机实现数据回归预测附matlab代码_第2张图片

中:n为麻雀的数量;d为要优化的变量的维度即独立参数的数目;xnd为第n只麻雀第d维度的值。由此,总体麻雀适应度值表征形式为 

【回归预测-DELM】基于麻雀算法改进深度学习极限学习机实现数据回归预测附matlab代码_第3张图片

式(4)中:f(x)为个体适应度值。适应度值较好的麻雀(即生产者)在搜索中会优先获得食物并指引群体的觅食方向与范围,与此同时,生产者会具有更大的觅食搜索范围。生产者在觅食过程中,位置不断发生移动,而在遇到捕食者时,移动规则又会发生改变,即 

【回归预测-DELM】基于麻雀算法改进深度学习极限学习机实现数据回归预测附matlab代码_第4张图片

式(5)中:t为当前迭代次数;j∈{1,2,…,d};xit,j为迭代第t次时,第i个麻雀的第j个维度的值;α∈(0,1],为随机数;iter_max为迭代次数最多的常数;R2∈[0,1],为报警值;ST∈[0,1],为安全阈值;Q为服从正态分布的随机数;L为1×d阶矩阵(元素全为1)。R2<ST时,代表该区域安全,无捕食者出没,生产者会出现大范围觅食行为;R2≥ST时,表示一些麻雀发现了捕食者并发出警告,所有麻雀迅速飞入安全区域。而对加入者而言,在觅食过程中,一旦生产者找到了好的食物源,加入者必会知晓,并飞向它的附近抢食,同时,也有加入者会时刻监视生产者,随时准备争抢食物。由此加入者的位置更新规则为

【回归预测-DELM】基于麻雀算法改进深度学习极限学习机实现数据回归预测附matlab代码_第5张图片

式(6)中:xp为生产者占据的最佳位置;xworst为全局最差位置;A为1×d阶矩阵,每个元素随机为1或-1;A†=AT(AAT)-1。当i>时,表示适应性较差的第i个加入者抢夺食物失败,为了更好地获得食物避免挨饿只能飞往其他地区进行觅食。总体而言,假设意识到危险的麻雀(即警戒者)占10%~20%。初始位置则随机产生,规则为

【回归预测-DELM】基于麻雀算法改进深度学习极限学习机实现数据回归预测附matlab代码_第6张图片

式(7)中:λ为步长控制函数,是一个均值为0,方差为1的正态分布随机数;fi为当前麻雀适应值;fg为全局最好适应值;fw为全局最差适应值;k为麻雀移动方向;xbest为全局最优位置;ε为最小常数,避免除数为零。当fi>fg时,警戒者位于种群边缘,意识到危险后向中央安全区靠近;当fi=fg时,则是处于种群中央的麻雀意识到了危险,为躲避危险,则向其他麻雀身边靠拢。

⛄ 部分代码

function X = pinv(A,tol)

%PINV   Pseudoinverse.

%   X = PINV(A) produces a matrix X of the same dimensions

%   as A' so that A*X*A = A, X*A*X = X and A*X and X*A

%   are Hermitian. The computation is based on SVD(A) and any

%   singular values less than a tolerance are treated as zero.

%

%   PINV(A,TOL) treats all singular values of A that are less than TOL as

%   zero. By default, TOL = max(size(A)) * eps(norm(A)).

%

%   Class support for input A: 

%      float: double, single

%

%   See also RANK.

%   Copyright 1984-2015 The MathWorks, Inc. 

A(isnan(A)) = 0;

A(isinf(A)) = 0;

[U,S,V] = svd(A,'econ');

s = diag(S);

if nargin < 2 

    tol = max(size(A)) * eps(norm(s,inf));

end

r1 = sum(s > tol)+1;

V(:,r1:end) = [];

U(:,r1:end) = [];

s(r1:end) = [];

s = 1./s(:);

X = (V.*s.')*U';

⛄ 运行结果

【回归预测-DELM】基于麻雀算法改进深度学习极限学习机实现数据回归预测附matlab代码_第7张图片

【回归预测-DELM】基于麻雀算法改进深度学习极限学习机实现数据回归预测附matlab代码_第8张图片

【回归预测-DELM】基于麻雀算法改进深度学习极限学习机实现数据回归预测附matlab代码_第9张图片

⛄ 参考文献

[1]崔兴华, 靳晟, 姚芷馨,等. 基于麻雀搜索算法和广义回归神经网络的玉米产量预测[J]. 数学的实践与认识, 2022, 52(7):9.

[2]马萌萌. 基于深度学习的极限学习机算法研究[D]. 中国海洋大学, 2016.

❤️ 关注我领取海量matlab电子书和数学建模资料

❤️部分理论引用网络文献,若有侵权联系博主删除

你可能感兴趣的:(神经网络预测,算法,matlab)