机器学习分为四大块,分别是 classification (分类), clustering (聚类), regression (回归), dimensionality reduction (降维)。
官网
scikit-learn 是机器学习领域非常热门的一个开源库,基于Python 语言写成。专门用于机器学习的模块。 可以免费使用。
SKlearn包含的机器学习方式: 分类,回归,无监督,数据降维,数据预处理等等,包含了常见的大部分机器学习方法。
scikit-learn中学习模式的调用,有很强的统一性,很多都是类似的。
from sklearn.linear_model importLinearRegression #导入模型
regressor = LinearRegression() #建立模型
regressor = regressor.fit(X_train, Y_train) #训练模型
regressor.predict(X_test) #预测
总结起来就是8个字:导入-建模-训练-预测
数据库网址:http://scikit-learn.org/stable/modules/classes.html#module-sklearn.datasets
里面包含了很多数据,可以直接拿来使用。
简单实例:
实例1
from sklearn import datasets
from sklearn.model_selection import train_test_split
iris = datasets.load_iris()
iris_X = iris.data
iris_y = iris.target
X_train, X_test, y_train, y_test = train_test_split(iris_X, iris_y, test_size=0.3)#划分为训练集和测试集数据
from sklearn.neighbors import KNeighborsClassifier #导入模型,k近邻函数
knn = KNeighborsClassifier() #建立模型
knn.fit(X_train,y_train) #训练模型
print(knn.predict(X_test)) #预测
print(y_test) #实际结果对照
实例2
from sklearn import datasets
loaded_data = datasets.load_boston()
data_X = loaded_data.data
data_y = loaded_data.target
from sklearn.linear_model import LinearRegression#调用线性回归函数
model = LinearRegression()
model.fit(data_X, data_y)
print(model.predict(data_X[:4,:]))
print(data_y[:4])
xgboost本质上还是GBDT,只是对GBDT进行了一些更改,叫X (Extreme) GBoosted,它把速度和效率做到了极致。在scikit-learn目前还没有这个分类器,因此要进行单独的安装。pip3 install xgboost
以最广泛的分类算法为例,大致可以分为线性和非线性两大派别。线性算法有著名的逻辑回归、朴素贝叶斯、最大熵等,非线性算法有随机森林、决策树、神经网络、核机器等等。线性算法举的大旗是训练和预测的效率比较高,但最终效果对特征的依赖程度较高,需要数据在特征层面上是线性可分的。因此,使用线性算法需要在特征工程上下不少功夫,尽量对特征进行选择、变换或者组合等使得特征具有区分性。而非线性算法则牛逼点,可以建模复杂的分类面,从而能更好的拟合数据。
那在我们选择了特征的基础上,哪个机器学习算法能取得更好的效果呢?谁也不知道。实践是检验哪个好的不二标准。那难道要苦逼到写五六个机器学习的代码吗?No,机器学习社区的力量是强大的,码农界的共识是不重复造轮子!因此,对某些较为成熟的算法,总有某些优秀的库可以直接使用,省去了大伙调研的大部分时间。
基于目前使用python较多,而python界中远近闻名的机器学习库要数scikit-learn莫属了。这个库优点很多。简单易用,接口抽象得非常好,而且文档支持实在感人。本文中,我们可以封装其中的很多机器学习算法,然后进行一次性测试,从而便于分析取优。当然了,针对具体算法,超参调优也非常重要。
本次使用mnist手写体库进行实验:http://deeplearning.net/data/mnist/mnist.pkl.gz。共5万训练样本和1万测试样本。
#!usr/bin/env python
# -*- coding: utf-8 -*-
import os
import time
from sklearn import metrics
import numpy as np
import pickle
import sys
# Multinomial Naive Bayes Classifier
def naive_bayes_classifier(train_x, train_y):
from sklearn.naive_bayes import MultinomialNB
model = MultinomialNB(alpha=0.01)
model.fit(train_x, train_y)
return model
# KNN Classifier
def knn_classifier(train_x, train_y):
from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier()
model.fit(train_x, train_y)
return model
# Logistic Regression Classifier
def logistic_regression_classifier(train_x, train_y):
from sklearn.linear_model import LogisticRegression
model = LogisticRegression(penalty='l2')
model.fit(train_x, train_y)
return model
# Random Forest Classifier
def random_forest_classifier(train_x, train_y):
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier(n_estimators=8)
model.fit(train_x, train_y)
return model
# Decision Tree Classifier
def decision_tree_classifier(train_x, train_y):
from sklearn import tree
model = tree.DecisionTreeClassifier()
model.fit(train_x, train_y)
return model
# GBDT(Gradient Boosting Decision Tree) Classifier
def gradient_boosting_classifier(train_x, train_y):
from sklearn.ensemble import GradientBoostingClassifier
model = GradientBoostingClassifier(n_estimators=200)
model.fit(train_x, train_y)
return model
# SVM Classifier
def svm_classifier(train_x, train_y):
from sklearn.svm import SVC
model = SVC(kernel='rbf', probability=True)
model.fit(train_x, train_y)
return model
# SVM Classifier using cross validation
def svm_cross_validation(train_x, train_y):
from sklearn.model_selection import GridSearchCV
from sklearn.svm import SVC
model = SVC(kernel='rbf', probability=True)
param_grid = {'C': [1e-3, 1e-2, 1e-1, 1, 10, 100, 1000], 'gamma': [0.001, 0.0001]}
grid_search = GridSearchCV(model, param_grid, n_jobs=1, verbose=1)
grid_search.fit(train_x, train_y)
best_parameters = grid_search.best_estimator_.get_params()
for para, val in best_parameters.items():
print(para, val)
model = SVC(kernel='rbf', C=best_parameters['C'], gamma=best_parameters['gamma'], probability=True)
model.fit(train_x, train_y)
return model
def read_data(data_file):
import gzip
# f = gzip.open(data_file, "rb")
# train, val, test = pickle.load(f)
f = gzip.open(data_file, "rb")
Myunpickle = pickle._Unpickler(file=f, fix_imports=True, encoding='bytes', errors="strict")
train, val, test = Myunpickle.load()
f.close()
train_x = train[0]
train_y = train[1]
test_x = test[0]
test_y = test[1]
return train_x, train_y, test_x, test_y
if __name__ == '__main__':
data_file = "d:/mnist.pkl.gz"
thresh = 0.5
model_save_file = None
model_save = {}
test_classifiers = ['NB', 'KNN', 'LR', 'RF', 'DT', 'SVM', 'GBDT']
classifiers = {'NB': naive_bayes_classifier,
'KNN': knn_classifier,
'LR': logistic_regression_classifier,
'RF': random_forest_classifier,
'DT': decision_tree_classifier,
'SVM': svm_classifier,
'SVMCV': svm_cross_validation,
'GBDT': gradient_boosting_classifier
}
print('reading training and testing data...')
train_x, train_y, test_x, test_y = read_data(data_file)
num_train, num_feat = train_x.shape
num_test, num_feat = test_x.shape
is_binary_class = (len(np.unique(train_y)) == 2)
print( '******************** Data Info *********************')
print( '#training data: %d, #testing_data: %d, dimension: %d' % (num_train, num_test, num_feat))
for classifier in test_classifiers:
print('******************* %s ********************' % classifier)
start_time = time.time()
model = classifiers[classifier](train_x, train_y)
print('training took %fs!' % (time.time() - start_time))
predict = model.predict(test_x)
if model_save_file != None:
model_save[classifier] = model
if is_binary_class:
precision = metrics.precision_score(test_y, predict)
recall = metrics.recall_score(test_y, predict)
print('precision: %.2f%%, recall: %.2f%%' % (100 * precision, 100 * recall))
accuracy = metrics.accuracy_score(test_y, predict)
print('accuracy: %.2f%%' % (100 * accuracy))
if model_save_file != None:
pickle.dump(model_save, open(model_save_file, 'wb'))
在这个数据集中,由于数据分布的团簇性较好(如果对这个数据库了解的话,看它的t-SNE映射图就可以看出来。由于任务简单,其在deep learning界已被认为是toy dataset),因此KNN的效果不赖。GBDT是个非常不错的算法,在kaggle等大数据比赛中,状元探花榜眼之列经常能见其身影。三个臭皮匠赛过诸葛亮,还是被验证有道理的,特别是三个臭皮匠还能力互补的时候!
还有一个在实际中非常有效的方法,就是融合这些分类器,再进行决策。例如简单的投票,效果都非常不错。建议在实践中,大家都可以尝试下。
印第安人糖尿病案例