动手学深度学习:6.8 长短期记忆(LSTM)

6.8 长短期记忆(LSTM)

本节将介绍另一种常用的门控循环神经网络:长短期记忆(long short-term memory,LSTM)[1]。它比门控循环单元的结构稍微复杂一点。

6.8.1 长短期记忆

LSTM 中引入了3个门,即输入门(input gate)、遗忘门(forget gate)和输出门(output gate),以及与隐藏状态形状相同的记忆细胞(某些文献把记忆细胞当成一种特殊的隐藏状态),从而记录额外的信息。

6.8.1.1 输入门、遗忘门和输出门

与门控循环单元中的重置门和更新门一样,如图6.7所示,长短期记忆的门的输入均为当前时间步输入XtXt \boldsymbol{X}_t[0,1]

图6.7 长短期记忆中输入门、遗忘门和输出门的计算

具体来说,假设隐藏单元个数为hh h[1,1]的tanh函数作为激活函数,如图6.8所示。

图6.8 长短期记忆中候选记忆细胞的计算

具体来说,时间步tt tC~t如何流入当前时间步的记忆细胞。如果遗忘门一直近似1且输入门一直近似0,过去的记忆细胞将一直通过时间保存并传递至当前时间步。这个设计可以应对循环神经网络中的梯度衰减问题,并更好地捕捉时间序列中时间步距离较大的依赖关系。

图6.9 长短期记忆中记忆细胞的计算

6.8.1.4 隐藏状态

有了记忆细胞以后,接下来我们还可以通过输出门来控制从记忆细胞到隐藏状态HtRn×hHt∈Rn×h \boldsymbol{H}_t \in \mathbb{R}^{n \times h}Ht=Ottanh(Ct).

这里的tanh函数确保隐藏状态元素值在-1到1之间。需要注意的是,当输出门近似1时,记忆细胞信息将传递到隐藏状态供输出层使用;当输出门近似0时,记忆细胞信息只自己保留。图6.10展示了长短期记忆中隐藏状态的计算。

图6.10 长短期记忆中隐藏状态的计算

6.8.2 读取数据集

下面我们开始实现并展示长短期记忆。和前几节中的实验一样,这里依然使用周杰伦歌词数据集来训练模型作词。

import numpy as np
import torch
from torch import nn, optim
import torch.nn.functional as F

import sys
sys.path.append("…")
import d2lzh_pytorch as d2l
device = torch.device(‘cuda’ if torch.cuda.is_available() else ‘cpu’)

(corpus_indices, char_to_idx, idx_to_char, vocab_size) = d2l.load_data_jay_lyrics()Copy to clipboardErrorCopied

6.8.3 从零开始实现

我们先介绍如何从零开始实现长短期记忆。

6.8.3.1 初始化模型参数

下面的代码对模型参数进行初始化。超参数num_hiddens定义了隐藏单元的个数。

num_inputs, num_hiddens, num_outputs = vocab_size, 256, vocab_size
print(‘will use’, device)

def get_params():
def _one(shape):
ts = torch.tensor(np.random.normal(0, 0.01, size=shape), device=device, dtype=torch.float32)
return torch.nn.Parameter(ts, requires_grad=True)
def _three():
return (_one((num_inputs, num_hiddens)),
_one((num_hiddens, num_hiddens)),
torch.nn.Parameter(torch.zeros(num_hiddens, device=device, dtype=torch.float32), requires_grad=True))

W_xi, W_hi, b_i = _three()  # 输入门参数
W_xf, W_hf, b_f = _three()  # 遗忘门参数
W_xo, W_ho, b_o = _three()  # 输出门参数
W_xc, W_hc, b_c = _three()  # 候选记忆细胞参数

# 输出层参数
W_hq = _one((num_hiddens, num_outputs))
b_q = torch.nn.Parameter(torch.zeros(num_outputs, device=device, dtype=torch.float32), requires_grad=True)
return nn.ParameterList([W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c, W_hq, b_q])

6.8.4 定义模型

在初始化函数中,长短期记忆的隐藏状态需要返回额外的形状为(批量大小, 隐藏单元个数)的值为0的记忆细胞。

def init_lstm_state(batch_size, num_hiddens, device):
return (torch.zeros((batch_size, num_hiddens), device=device), 
        torch.zeros((batch_size, num_hiddens), device=device))

下面根据长短期记忆的计算表达式定义模型。需要注意的是,只有隐藏状态会传递到输出层,而记忆细胞不参与输出层的计算。

def lstm(inputs, state, params):
[W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c, W_hq, b_q] = params
(H, C) = state
outputs = []
for X in inputs:
    I = torch.sigmoid(torch.matmul(X, W_xi) + torch.matmul(H, W_hi) + b_i)
    F = torch.sigmoid(torch.matmul(X, W_xf) + torch.matmul(H, W_hf) + b_f)
    O = torch.sigmoid(torch.matmul(X, W_xo) + torch.matmul(H, W_ho) + b_o)
    C_tilda = torch.tanh(torch.matmul(X, W_xc) + torch.matmul(H, W_hc) + b_c)
    C = F * C + I * C_tilda
    H = O * C.tanh()
    Y = torch.matmul(H, W_hq) + b_q
    outputs.append(Y)
return outputs, (H, C)

6.8.4.1 训练模型并创作歌词

同上一节一样,我们在训练模型时只使用相邻采样。设置好超参数后,我们将训练模型并根据前缀“分开”和“不分开”分别创作长度为50个字符的一段歌词。

num_epochs, num_steps, batch_size, lr, clipping_theta = 160, 35, 32, 1e2, 1e-2

pred_period, pred_len, prefixes = 40, 50, [‘分开’, ‘不分开’]Copy to clipboardErrorCopied

我们每过40个迭代周期便根据当前训练的模型创作一段歌词。

d2l.train_and_predict_rnn(lstm, get_params, init_lstm_state, num_hiddens,
vocab_size, device, corpus_indices, idx_to_char,
char_to_idx, False, num_epochs, num_steps, lr,
clipping_theta, batch_size, pred_period, pred_len,
prefixes)
Copy to clipboardErrorCopied

输出:

epoch 40, perplexity 211.416571, time 1.37 sec
  • 分开 我不的我 我不的我 我不的我 我不的我 我不的我 我不的我 我不的我 我不的我 我不的我 我不的我
  • 不分开 我不的我 我不的我 我不的我 我不的我 我不的我 我不的我 我不的我 我不的我 我不的我 我不的我
    epoch 80, perplexity 67.048346, time 1.35 sec
  • 分开 我想你你 我不要再想 我不要这我 我不要这我 我不要这我 我不要这我 我不要这我 我不要这我 我不
  • 不分开 我想你你想你 我不要这不样 我不要这我 我不要这我 我不要这我 我不要这我 我不要这我 我不要这我
    epoch 120, perplexity 15.552743, time 1.36 sec
  • 分开 我想带你的微笑 像这在 你想我 我想你 说你我 说你了 说给怎么么 有你在空 你在在空 在你的空
  • 不分开 我想要你已经堡 一样样 说你了 我想就这样着你 不知不觉 你已了离开活 后知后觉 我该了这生活 我
    epoch 160, perplexity 4.274031, time 1.35 sec
  • 分开 我想带你 你不一外在半空 我只能够远远著她 这些我 你想我难难头 一话看人对落我一望望我 我不那这
  • 不分开 我想你这生堡 我知好烦 你不的节我 后知后觉 我该了这节奏 后知后觉 又过了一个秋 后知后觉 我该Copy to clipboardErrorCopied

    6.8.5 简洁实现

    在Gluon中我们可以直接调用rnn模块中的LSTM类。

    lr = 1e-2 # 注意调整学习率
    lstm_layer = nn.LSTM(input_size=vocab_size, hidden_size=num_hiddens)
    model = d2l.RNNModel(lstm_layer, vocab_size)
    d2l.train_and_predict_rnn_pytorch(model, num_hiddens, vocab_size, device,
    corpus_indices, idx_to_char, char_to_idx,
    num_epochs, num_steps, lr, clipping_theta,
    batch_size, pred_period, pred_len, prefixes)
    Copy to clipboardErrorCopied

    输出:

    epoch 40, perplexity 1.020401, time 1.54 sec
  • 分开始想担 妈跟我 一定是我妈在 因为分手前那句抱歉 在感动 穿梭时间的画面的钟 从反方向开始移动 回到
  • 不分开始想像 妈跟我 我将我的寂寞封闭 然后在这里 不限日期 然后将过去 慢慢温习 让我爱上你 那场悲剧
    epoch 80, perplexity 1.011164, time 1.34 sec
  • 分开始想担 你的 从前的可爱女人 温柔的让我心疼的可爱女人 透明的让我感动的可爱女人 坏坏的让我疯狂的可
  • 不分开 我满了 让我疯狂的可爱女人 漂亮的让我面红的可爱女人 温柔的让我心疼的可爱女人 透明的让我感动的可
    epoch 120, perplexity 1.025348, time 1.39 sec
  • 分开始共渡每一天 手牵手 一步两步三步四步望著天 看星星 一颗两颗三颗四颗 连成线背著背默默许下心愿 看
  • 不分开 我不懂 说了没用 他的笑容 有何不同 在你心中 我不再受宠 我的天空 是雨是风 还是彩虹 你在操纵
    epoch 160, perplexity 1.017492, time 1.42 sec
  • 分开始乡相信命运 感谢地心引力 让我碰到你 漂亮的让我面红的可爱女人 温柔的让我心疼的可爱女人 透明的让
  • 不分开 我不能再想 我不 我不 我不能 爱情走的太快就像龙卷风 不能承受我已无处可躲 我不要再想 我不要再Copy to clipboardErrorCopied

    小结

    • 长短期记忆的隐藏层输出包括隐藏状态和记忆细胞。只有隐藏状态会传递到输出层。
    • 长短期记忆的输入门、遗忘门和输出门可以控制信息的流动。
    • 长短期记忆可以应对循环神经网络中的梯度衰减问题,并更好地捕捉时间序列中时间步距离较大的依赖关系。

    参考文献

    [1] Hochreiter, S., & Schmidhuber, J. (1997). Long short-ter

你可能感兴趣的:(#,深度学习)