- 使用pytorch和opencv根据颜色相似性提取图像
深蓝海拓
机器视觉和人工智能学习opencv学习笔记pytorchopencv人工智能
需求:将下图中的花朵提取出来。代码:importcv2importtorchimportnumpyasnpimporttimedefget_similar_colors(image,color_list,threshold):#将图像和颜色列表转换为torch张量device=torch.device('cuda'iftorch.cuda.is_available()else'cpu')image
- 分布式多卡训练(DDP)踩坑
m0_54804970
面试学习路线阿里巴巴分布式
多卡训练最近在跑yolov10版本的RT-DETR,用来进行目标检测。单卡训练语句(正常运行):pythonmain.py多卡训练语句:需要通过torch.distributed.launch来启动,一般是单节点,其中CUDA_VISIBLE_DEVICES设置用的显卡编号,也可以不用,直接在main.py里面指定device也行,–nproc_pre_node每个节点的显卡数量。python-m
- Torch安装必知
m0_52111823
人工智能
从硬件到Torch的支持链条如下Nvidia显卡Nvidia显卡驱动CudaTorchCudnncudnn对torch不是必需,部分项目会依赖cudnn。查看本机显卡版本型号,win+R,输入DxDiag,在显示或呈现栏包含显卡信息查看显卡版本与显卡驱动版本的兼容性,在https://www.nvidia.cn/geforce/drivers/,查看本机显卡支持的显卡驱动,根据搜索结果下载最新的N
- PyTorch数据加载:实战入门
秋.
pytorch人工智能python数据加载
"好的数据加载是成功训练的第一步"一、为什么要用DataLoader?当我们刚开始学习深度学习时,常常会这样处理数据:#传统方式加载数据images=[...]#所有图片数据labels=[...]#所有标签foriinrange(0,len(images),32):batch_images=images[i:i+32]batch_labels=labels[i:i+32]#训练代码...这种方式
- 大模型国产化迁移大模型到昇腾教程(Pytorch版)
科技互联人生
科技数码人工智能AIGC语言模型
大模型国产化适配10-快速迁移大模型到昇腾910B保姆级教程(Pytorch版)随着ChatGPT的火爆,AI大模型时代来临,但算力紧张。中美贸易战及美国制裁AI芯片,国产化势在必行。已有国产AI芯片和Mindformers框架,基于昇腾910训练大模型,使用MindIE实现大模型服务化。本文介绍如何迅速将大型模型迁移到昇腾910B,许多入门者都是从斯坦福羊驼开始的。我们将利用羊驼的训练代码和数据
- 大模型微调入门(Transformers + Pytorch)
昵称不能为null
pythonllm机器学习人工智能
目标输入:你是谁?输出:我们预训练的名字。训练为了性能好下载小参数模型,普通机器都能运行。下载模型#方式1:使用魔搭社区SDK下载#down_deepseek.pyfrommodelscopeimportsnapshot_downloadmodel_dir=snapshot_download('deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B')#方式2:gitl
- 计算机视觉实战:YOLOv8在工业质检中的应用(附完整代码+数据集)
emmm形成中
深度学习人工智能python计算机视觉
计算机视觉实战:YOLOv8在工业质检中的应用(附完整代码+数据集)摘要:本文为零基础读者系统讲解目标检测核心原理,基于YOLOv8实现工业缺陷检测实战项目。从数据标注到模型部署,包含环境配置、数据增强、模型训练全流程详解,手把手教你打造高精度智能质检系统!关键词:YOLOv8、目标检测、工业质检、缺陷识别、PyTorch一、为什么选择YOLOv8做工业质检?1.1工业质检的三大痛点人工成本高:传
- RNN原理+实战 pytorch--lstm--gru
甜辣uu
python从入门到精通tensorflowpythonpytorch深度学习
rnn原理:https://blog.csdn.net/qq_39422642/article/details/78676567其中每个圆圈可以看作是一个单元,而且每个单元做的事情也是一样的,因此可以折叠呈左半图的样子。用一句话解释RNN,就是一个单元结构重复使用。RNN中的结构细节:1.可以把StSt当作隐状态,捕捉了之前时间点上的信息。就像你去考研一样,考的时候记住了你能记住的所有信息。2.o
- 大语言模型技术专栏(三):Attention机制——从RNN到Transformer的惊世一跃!
北海yy
大语言模型技术专栏语言模型rnntransformer
文章目录概要一、Attention机制:让AI学会「划重点」二、Attention机制的核心原理三、Self-Attention:Transformer的核心四、代码实战:用PyTorch实现Attention五、Attention的进化:从Transformer到GPT概要大家好,我是北海yy,继续带来大语言模型技术专栏的深度解析!在上一期《RNN语言模型——让AI真正「记住」上下文的秘密武器》
- Transformer 代码剖析7 - 词元嵌入(TokenEmbedding) (pytorch实现)
lczdyx
Transformer代码剖析transformerpytorch深度学习人工智能python
一、类定义与继承关系剖析1.1代码结构图示神经网络基础模块词嵌入基类自定义词元嵌入构造函数定义基类初始化词汇量参数维度参数填充标识参数1.2代码实现精讲"""@author:Hyunwoong@when:2019-10-22@homepage:https://github.com/gusdnd852"""fromtorchimportnnclassTokenEmbedding(nn.Embeddi
- 使用深度学习模型U-Net进行训练基于哨兵2的作物分割数据集。PyTorch框架为例,如何构建和训练U-Net模型来完成基于哨兵2的作物分割检测
计算机C9硕士_算法工程师
分割数据深度学习pytorch人工智能
使用深度学习模型如U-Net进行训练基于哨兵2的作物分割。PyTorch框架为例,如何构建和训练U-Net模型来完成基于哨兵2的作物分割检测基于哨兵2的作物分割,共18种作物类型(背景,草地,软冬小麦,玉米,冬季大麦,冬季油菜,春季大麦,向日葵,葡萄藤,甜菜,冬季小黑麦,冬季硬质小麦,水果、蔬菜、花卉,土豆,豆科饲料,大豆,果园,混合谷物,高粱),38到61个不同时间段同一位置10通道多光谱图像,
- 深度学习框架之主流学习框架
uu1224
深度学习学习人工智能机器学习神经网络
深度学习框架是一类专门设计用来简化和加速神经网络模型开发过程的软件工具。它们提供了构建、训练和部署神经网络所需的各种功能和库。以下是一些主流的深度学习框架及其特点:TensorFlow:由Google开发,是一个广泛使用的开源深度学习框架。它以强大的图计算模型和分布式计算能力著称,并且通过高级API如Keras,为用户提供了易于上手的开发体验。PyTorch:由Facebook开发,以其动态计算图
- pytorch 机械臂逆运动学迭代数值解
chase。
机器人机器人
https://github.com/UM-ARM-Lab/pytorch_kinematics分享一个求解运动学逆解的第三方库pytorch_kinematics,以下是我写的一份集成样例。importsysimportitertoolsimporttypingfromconcurrent.futuresimportThreadPoolExecutor,as_completedfromconte
- 【Pytorch】基于LSTM-KAN、BiLSTM-KAN、GRU-KAN、TCN-KAN、Transformer-KAN(各种KAN修改一行代码搞定)的共享单车租赁预测研究(数据可换)Python
冒泡芳
pythonpytorchlstm
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述一、研究背景与意义二、TCN与KAN简介三、基于TCN-KAN的共享单车租赁预测模型四、研究挑战与展望基于LSTM-KAN、BiLSTM-KAN、GRU-KAN、TCN-KAN、Transformer-KAN的共享单车租赁预测研究1.引言2.模型介绍
- Transformer 代码剖析9 - 解码器模块Decoder (pytorch实现)
lczdyx
Transformer代码剖析transformerpytorch深度学习人工智能python
一、模块架构全景图1.1核心功能定位Transformer解码器是序列生成任务的核心组件,负责根据编码器输出和已生成序列预测下一个目标符号。其独特的三级注意力机制架构使其在机器翻译、文本生成等任务中表现出色。下面是解码器在Transformer架构中的定位示意图:解码器层组件解码器内部结构Transformer自注意力交叉注意力前馈网络残差连接+层归一化嵌入层位置编码解码器层1解码器层2...解码
- Pytorch神经网络魔改之:模型融合 - 速通(1)
lczdyx
pytorch神经网络深度学习python人工智能
本文将以几种常见方法为例,介绍如何进行Pytorch神经网络的模型融合:1.子模型串联(SequentialConcatenation)在这个方法中,输入数据x首先通过FeatureExtractor(即:子模型1),处理后的结果再传递给Classifier(即:子模型2)。最后,返回Classifier的输出。这种方式允许将两个子模型串联起来,形成一个组合模型:importtorch.nnasn
- Transformer预测 | 基于TCN-Transformer的股票价格预测(Pytorch)
机器学习之心
#Transformer模型transformerpytorch深度学习TCN-Transformer股票价格预测
文章目录预测效果文章概述程序设计参考资料预测效果文章概述Transformer预测|基于TCN-Transformer的股票价格预测(Python)Transformer模型本质上都是预训练语言模型,大都采用自监督学习(Self-supervisedlearning)的方式在大量生语料上进行训练,也就是说,训练这些Transformer模型完全不需要人工标注数据。Transformer模型的标志就
- win11编译pytorchvision cuda128版本流程
System_sleep
pytorchpython编译windowscuda
1.前置条件本篇续接自win11编译pytorchcuda128版本流程,阅读前请先参考上一篇配置环境。访问https://kkgithub.com/pytorch/vision/archive/refs/tags/v0.21.0.tar.gz下载源码,下载后解压。2.编译打开MiniforgePrompt,依次执行如下代码:condaactivatetorch_build_envcondains
- pytorch与深度学习随记——AlexNet
黑色的山岗在沉睡
深度学习随记深度学习pytorch人工智能
AlexNet和LeNet的设计理念非常相似,但也存在显著差异:基本结构对比网络深度:AlexNet比LeNet-5要深得多,AlexNet由八层组成:五个卷积层、两个全连接隐藏层和一个全连接输出层。激活函数:AlexNet使用ReLU而不是sigmoid作为其激活函数,这有助于缓解梯度消失问题并加速训练过程。AlexNet架构的创新点局部响应归一化(LRN):AlexNet引入LRN层,可以创建
- 从零到一:利用DeepSeek构建高精度图像分类模型实战解析
一碗黄焖鸡三碗米饭
人工智能前沿与实践分类数据挖掘人工智能
引言:为什么选择DeepSeek进行图像分类?在计算机视觉领域,图像分类作为基础任务,其技术演进经历了从传统特征工程到深度学习的革命性转变。DeepSeek作为国产自研的深度学习框架,凭借其高效计算优化和灵活架构设计,在ImageNet等基准测试中展现出与PyTorch、TensorFlow等主流框架相媲美的性能。本文将手把手带您实现从零搭建工业级图像分类模型的全过程。一、DeepSeek技术架构
- 《动手学PyTorch深度学习建模与应用》第二章:2.4-2.6节详解
环工人学Python
深度学习pytorch人工智能python机器学习学习
写在前面:不知不觉已经更了第一个章节,目前的内容都是很基础的内容,有人会问现在ai时代,还有必要学习这些内容吗,我想说的是,越是基础的内容我们越要认真去学习和分析,ai可以快速解决问题,但是我希望我们可以知其所以然,感谢所有支持的收藏和粉丝,希望这些文章对你们有些许帮助!点点关注不迷路,免费的赞和收藏走起来!后续更新第一时间提示哦,每周会更新不同内容,下周更新如何用各种模态的大模型去为你服务,编写
- 科技快讯 | DeepSeek宣布开源DeepGEMM;多个团队开发AI论文反识别技术;OpenAI GPT 4.5现身Android测试版,即将发布
最新科技快讯
科技
DeepSeek宣布开源DeepGEMM财联社2月26日电,Deepseek于开源周第三天宣布开源DeepGEMM。DeepGEMM是一个专为简洁高效的FP8通用矩阵乘法(GEMM)设计的库,具有细粒度缩放功能,如DeepSeek-V3中所提出。它支持普通和混合专家(MoE)分组的GEMM。该库采用CUDA编写,在安装过程中无需编译,通过使用轻量级的即时编译(JIT)模块在运行时编译所有内核。FP
- 探索未来智能:Lucidrains的Mixture of Experts框架详解
咎旗盼Jewel
探索未来智能:Lucidrains的MixtureofExperts框架详解mixture-of-expertsAPytorchimplementationofSparsely-GatedMixtureofExperts,formassivelyincreasingtheparametercountoflanguagemodels项目地址:https://gitcode.com/gh_mirror
- 【学习】电脑上有多个GPU,命令行指定GPU进行训练。
超好的小白
学习人工智能深度学习
使用如下指令可以指定使用的GPU。CUDA_VISIBLE_DEVICES=1假设要使用第二个GPU进行训练。CUDA_VISIBLE_DEVICES=1pythontrain.py
- 程序员未来的出路:行业趋势与职业发展分析
guzhoumingyue
AIpython
随着技术的发展和行业需求的变化,程序员的职业出路也在不断演变。以下是程序员未来可能的职业发展方向及具体建议:一、技术深耕路线AI与机器学习专家趋势:AI技术在各行业的应用日益广泛,从自动驾驶到智能客服,需求持续增长。技能要求:Python、TensorFlow、PyTorch、数据挖掘、算法优化。发展路径:从机器学习工程师做起,积累项目经验。深入研究深度学习、强化学习等前沿技术。成为AI架构师或数
- 图像识别-pytorch
星辰瑞云
机器学习cnnpytorch
Pytorch神经网络工具箱神经网络核心组件神经网络的基本组件层:包括卷积层、池化层、全连接层等。层是神经网络的基本结构,输入张量通过层后变为输出张量。模型:由层构成的网络结构,如AlexNet、VGG等。模型可以是预训练的,也可以自己搭建。损失函数:用于衡量预测值与真实值之间的差距,如均方误差。损失函数越小越好。优化器:用于调整权重和偏置,使损失函数最小化。优化器决定了参数的调整方式。误差反传(
- Pytorch数据处理工具箱(后半部分)
不要不开心了
机器学习神经网络深度学习人工智能pytorch
今天的内容主要介绍了PyTorch中的数据处理工具箱及其相关工具的使用方法:1.DataLoader:-DataLoader用于批量处理数据,支持多线程加载数据。主要参数包括datase`(数据集)batch_size(批量大小)、shuffle(是否打乱数据)、num_workers(加载数据的线程数)等。DataLoader本身不是迭代器,但可以通过`iter`命令转换为迭代器。2.torch
- 全过程带你从入门到精通《动手学PyTorch深度学习建模与应用》第二章:2.1-2.3节详解,篇幅超了,缺的后面再补吧
环工人学Python
深度学习pytorch人工智能python机器学习
写在前面:点点关注不迷路,免费的赞和收藏走起来!后续更新第一时间提示哦,每周会更新不同内容,下周更新如何用各种模态的大模型去为你服务,编写代码。在深度学习的世界里,理解基础概念是构建复杂模型的关键。第二章“深度学习基础与PyTorch实现”将帮助我们深入理解深度学习的核心概念,并通过PyTorch实现这些概念。这一章的内容非常重要,因为它不仅涵盖了神经网络的基本原理,还介绍了激活函数、损失函数和优
- 基于 Pytorch 的全卷积网络人脸表情识别:从数据到部署的实战之旅
那年一路北
Pytorch理论+实践pytorch网络人工智能
前言:本文将详细介绍基于Pytorch框架,利用全卷积网络进行人脸表情识别的完整过程,涵盖从数据集的准备、模型的设计与训练,再到模型的部署与预测,通过代码实现以及详细讲解,帮助读者深入理解并掌握这一技术。一、引言人脸表情是人类情感交流的重要方式,不同的表情能够传达出丰富的情感信息。人脸表情识别在智能交互、安防监控、心理健康分析等众多领域有着广泛的应用前景。随着深度学习技术的发展,基于卷积神经网络的
- 基于yolov8的糖尿病视网膜病变严重程度检测系统python源码+pytorch模型+评估指标曲线+精美GUI界面
FL1623863129
深度学习YOLO
【算法介绍】基于YOLOv8的糖尿病视网膜病变严重程度检测系统基于YOLOv8的糖尿病视网膜病变严重程度检测系统是一款利用深度学习技术,专为糖尿病视网膜病变早期诊断设计的智能辅助工具。该系统采用YOLOv8目标检测模型,结合经过标注和处理的医学影像数据集,能够高效且准确地检测并分类糖尿病视网膜病变的不同严重程度。YOLOv8模型以其高速和高精度的特点,在处理眼底图像时展现了强大的能力。通过优化模型
- mondb入手
木zi_鸣
mongodb
windows 启动mongodb 编写bat文件,
mongod --dbpath D:\software\MongoDBDATA
mongod --help 查询各种配置
配置在mongob
打开批处理,即可启动,27017原生端口,shell操作监控端口 扩展28017,web端操作端口
启动配置文件配置,
数据更灵活
- 大型高并发高负载网站的系统架构
bijian1013
高并发负载均衡
扩展Web应用程序
一.概念
简单的来说,如果一个系统可扩展,那么你可以通过扩展来提供系统的性能。这代表着系统能够容纳更高的负载、更大的数据集,并且系统是可维护的。扩展和语言、某项具体的技术都是无关的。扩展可以分为两种:
1.
- DISPLAY变量和xhost(原创)
czmmiao
display
DISPLAY
在Linux/Unix类操作系统上, DISPLAY用来设置将图形显示到何处. 直接登陆图形界面或者登陆命令行界面后使用startx启动图形, DISPLAY环境变量将自动设置为:0:0, 此时可以打开终端, 输出图形程序的名称(比如xclock)来启动程序, 图形将显示在本地窗口上, 在终端上输入printenv查看当前环境变量, 输出结果中有如下内容:DISPLAY=:0.0
- 获取B/S客户端IP
周凡杨
java编程jspWeb浏览器
最近想写个B/S架构的聊天系统,因为以前做过C/S架构的QQ聊天系统,所以对于Socket通信编程只是一个巩固。对于C/S架构的聊天系统,由于存在客户端Java应用,所以直接在代码中获取客户端的IP,应用的方法为:
String ip = InetAddress.getLocalHost().getHostAddress();
然而对于WEB
- 浅谈类和对象
朱辉辉33
编程
类是对一类事物的总称,对象是描述一个物体的特征,类是对象的抽象。简单来说,类是抽象的,不占用内存,对象是具体的,
占用存储空间。
类是由属性和方法构成的,基本格式是public class 类名{
//定义属性
private/public 数据类型 属性名;
//定义方法
publ
- android activity与viewpager+fragment的生命周期问题
肆无忌惮_
viewpager
有一个Activity里面是ViewPager,ViewPager里面放了两个Fragment。
第一次进入这个Activity。开启了服务,并在onResume方法中绑定服务后,对Service进行了一定的初始化,其中调用了Fragment中的一个属性。
super.onResume();
bindService(intent, conn, BIND_AUTO_CREATE);
- base64Encode对图片进行编码
843977358
base64图片encoder
/**
* 对图片进行base64encoder编码
*
* @author mrZhang
* @param path
* @return
*/
public static String encodeImage(String path) {
BASE64Encoder encoder = null;
byte[] b = null;
I
- Request Header简介
aigo
servlet
当一个客户端(通常是浏览器)向Web服务器发送一个请求是,它要发送一个请求的命令行,一般是GET或POST命令,当发送POST命令时,它还必须向服务器发送一个叫“Content-Length”的请求头(Request Header) 用以指明请求数据的长度,除了Content-Length之外,它还可以向服务器发送其它一些Headers,如:
- HttpClient4.3 创建SSL协议的HttpClient对象
alleni123
httpclient爬虫ssl
public class HttpClientUtils
{
public static CloseableHttpClient createSSLClientDefault(CookieStore cookies){
SSLContext sslContext=null;
try
{
sslContext=new SSLContextBuilder().l
- java取反 -右移-左移-无符号右移的探讨
百合不是茶
位运算符 位移
取反:
在二进制中第一位,1表示符数,0表示正数
byte a = -1;
原码:10000001
反码:11111110
补码:11111111
//异或: 00000000
byte b = -2;
原码:10000010
反码:11111101
补码:11111110
//异或: 00000001
- java多线程join的作用与用法
bijian1013
java多线程
对于JAVA的join,JDK 是这样说的:join public final void join (long millis )throws InterruptedException Waits at most millis milliseconds for this thread to die. A timeout of 0 means t
- Java发送http请求(get 与post方法请求)
bijian1013
javaspring
PostRequest.java
package com.bijian.study;
import java.io.BufferedReader;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.HttpURL
- 【Struts2二】struts.xml中package下的action配置项默认值
bit1129
struts.xml
在第一部份,定义了struts.xml文件,如下所示:
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache.org/dtds/struts
- 【Kafka十三】Kafka Simple Consumer
bit1129
simple
代码中关于Host和Port是割裂开的,这会导致单机环境下的伪分布式Kafka集群环境下,这个例子没法运行。
实际情况是需要将host和port绑定到一起,
package kafka.examples.lowlevel;
import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
impo
- nodejs学习api
ronin47
nodejs api
NodeJS基础 什么是NodeJS
JS是脚本语言,脚本语言都需要一个解析器才能运行。对于写在HTML页面里的JS,浏览器充当了解析器的角色。而对于需要独立运行的JS,NodeJS就是一个解析器。
每一种解析器都是一个运行环境,不但允许JS定义各种数据结构,进行各种计算,还允许JS使用运行环境提供的内置对象和方法做一些事情。例如运行在浏览器中的JS的用途是操作DOM,浏览器就提供了docum
- java-64.寻找第N个丑数
bylijinnan
java
public class UglyNumber {
/**
* 64.查找第N个丑数
具体思路可参考 [url] http://zhedahht.blog.163.com/blog/static/2541117420094245366965/[/url]
*
题目:我们把只包含因子
2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14
- 二维数组(矩阵)对角线输出
bylijinnan
二维数组
/**
二维数组 对角线输出 两个方向
例如对于数组:
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 },
{ 13, 14, 15, 16 },
slash方向输出:
1
5 2
9 6 3
13 10 7 4
14 11 8
15 12
16
backslash输出:
4
3
- [JWFD开源工作流设计]工作流跳跃模式开发关键点(今日更新)
comsci
工作流
既然是做开源软件的,我们的宗旨就是给大家分享设计和代码,那么现在我就用很简单扼要的语言来透露这个跳跃模式的设计原理
大家如果用过JWFD的ARC-自动运行控制器,或者看过代码,应该知道在ARC算法模块中有一个函数叫做SAN(),这个函数就是ARC的核心控制器,要实现跳跃模式,在SAN函数中一定要对LN链表数据结构进行操作,首先写一段代码,把
- redis常见使用
cuityang
redis常见使用
redis 通常被认为是一个数据结构服务器,主要是因为其有着丰富的数据结构 strings、map、 list、sets、 sorted sets
引入jar包 jedis-2.1.0.jar (本文下方提供下载)
package redistest;
import redis.clients.jedis.Jedis;
public class Listtest
- 配置多个redis
dalan_123
redis
配置多个redis客户端
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi=&quo
- attrib命令
dcj3sjt126com
attr
attrib指令用于修改文件的属性.文件的常见属性有:只读.存档.隐藏和系统.
只读属性是指文件只可以做读的操作.不能对文件进行写的操作.就是文件的写保护.
存档属性是用来标记文件改动的.即在上一次备份后文件有所改动.一些备份软件在备份的时候会只去备份带有存档属性的文件.
- Yii使用公共函数
dcj3sjt126com
yii
在网站项目中,没必要把公用的函数写成一个工具类,有时候面向过程其实更方便。 在入口文件index.php里添加 require_once('protected/function.php'); 即可对其引用,成为公用的函数集合。 function.php如下:
<?php /** * This is the shortcut to D
- linux 系统资源的查看(free、uname、uptime、netstat)
eksliang
netstatlinux unamelinux uptimelinux free
linux 系统资源的查看
转载请出自出处:http://eksliang.iteye.com/blog/2167081
http://eksliang.iteye.com 一、free查看内存的使用情况
语法如下:
free [-b][-k][-m][-g] [-t]
参数含义
-b:直接输入free时,显示的单位是kb我们可以使用b(bytes),m
- JAVA的位操作符
greemranqq
位运算JAVA位移<<>>>
最近几种进制,加上各种位操作符,发现都比较模糊,不能完全掌握,这里就再熟悉熟悉。
1.按位操作符 :
按位操作符是用来操作基本数据类型中的单个bit,即二进制位,会对两个参数执行布尔代数运算,获得结果。
与(&)运算:
1&1 = 1, 1&0 = 0, 0&0 &
- Web前段学习网站
ihuning
Web
Web前段学习网站
菜鸟学习:http://www.w3cschool.cc/
JQuery中文网:http://www.jquerycn.cn/
内存溢出:http://outofmemory.cn/#csdn.blog
http://www.icoolxue.com/
http://www.jikexue
- 强强联合:FluxBB 作者加盟 Flarum
justjavac
r
原文:FluxBB Joins Forces With Flarum作者:Toby Zerner译文:强强联合:FluxBB 作者加盟 Flarum译者:justjavac
FluxBB 是一个快速、轻量级论坛软件,它的开发者是一名德国的 PHP 天才 Franz Liedke。FluxBB 的下一个版本(2.0)将被完全重写,并已经开发了一段时间。FluxBB 看起来非常有前途的,
- java统计在线人数(session存储信息的)
macroli
javaWeb
这篇日志是我写的第三次了 前两次都发布失败!郁闷极了!
由于在web开发中常常用到这一部分所以在此记录一下,呵呵,就到备忘录了!
我对于登录信息时使用session存储的,所以我这里是通过实现HttpSessionAttributeListener这个接口完成的。
1、实现接口类,在web.xml文件中配置监听类,从而可以使该类完成其工作。
public class Ses
- bootstrp carousel初体验 快速构建图片播放
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
img{
border: 1px solid white;
box-shadow: 2px 2px 12px #333;
_width: expression(this.width > 600 ? "600px" : this.width + "px");
_height: expression(this.width &
- SparkSQL读取HBase数据,通过自定义外部数据源
superlxw1234
sparksparksqlsparksql读取hbasesparksql外部数据源
关键字:SparkSQL读取HBase、SparkSQL自定义外部数据源
前面文章介绍了SparSQL通过Hive操作HBase表。
SparkSQL从1.2开始支持自定义外部数据源(External DataSource),这样就可以通过API接口来实现自己的外部数据源。这里基于Spark1.4.0,简单介绍SparkSQL自定义外部数据源,访
- Spring Boot 1.3.0.M1发布
wiselyman
spring boot
Spring Boot 1.3.0.M1于6.12日发布,现在可以从Spring milestone repository下载。这个版本是基于Spring Framework 4.2.0.RC1,并在Spring Boot 1.2之上提供了大量的新特性improvements and new features。主要包含以下:
1.提供一个新的sprin