MNIST数据集有10个标签,如何设计网络结构?
可以使用Softmax输出预测分布。
假设 z l ∈ R K z^l\in R^K zl∈RK是最后一层的输出,于是可得:
P ( y = i ) = e z i ∑ j = 0 K − 1 e z j , i ∈ { 0 , … , K − 1 } P(y=i)=\frac{e^{z_{i}}}{\sum_{j=0}^{K-1} e^{z_{j}}}, i \in\{0, \ldots, K-1\} P(y=i)=∑j=0K−1ezjezi,i∈{0,…,K−1}
例子:
交叉熵损失:
使用numpy计算交叉熵损失:
import numpy as np
y = np.array([1,0,0])
z = np.array([0.2,0.1,-0.1])
y_pred = np.exp(z) / np.exp(z).sum()
loss = (-y * np.log(y_pred)).sum()
print(loss)
输出结果:0.9729189131256584
使用PyTorch计算交叉熵损失:
import torch
y = torch.LongTensor([0])
z = torch.Tensor([[0.2,0.1,-0.1]])
criterion = torch.nn.CrossEntropyLoss()
loss = criterion(z,y)
print(loss)
输出结果:tensor(0.9729)
使用小批量来计算交叉熵损失:
import torch
criterion = torch.nn.CrossEntropyLoss()
Y = torch.LongTensor([2,0,1])
Y_pred1 = torch.Tensor([[0.1, 0.2, 0.9],
[1.1, 0.1, 0.2],
[0.2, 2.1, 0.1]])
Y_pred2 = torch.Tensor([[0.1, 0.2, 0.9],
[1.1, 0.1, 0.2],
[0.2, 2.1, 0.1]])
l1 = criterion(Y_pred1,Y)
l2 = criterion(Y_pred2,Y)
print("Batch loss1 = ",l1.data,"\nBatch Loss2 = ",l2.data)
输出结果:
Batch loss1 = tensor(0.4966)
Batch Loss2 = tensor(0.4966)
设计MNIST数据集的分类器:
1、导入各种包
import torch,torchvision
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
batch_size = 64
transform = transforms.Compose([
transforms.ToTensor(),#将PIL图像转换为PyTorch张量
transforms.Normalize((0.1307, ),(0.3081, ))#这两个参数是平均值和标准差
])
train_dataset = datasets.MNIST(root='../dataset/mnist/',
train = True,
download = True,
transform = torchvision.transforms.ToTensor())
train_loader = DataLoader(train_dataset,
shuffle = True,
batch_size = batch_size)
test_dataset = datasets.MNIST(root='../dataset/mnist/',
train=False,
download = True,
transform = torchvision.transforms.ToTensor())
test_loader = DataLoader(test_dataset,
shuffle = False,
batch_size = batch_size)
class Net(torch.nn.Module):
def __init__(self):
super(Net,self).__init__()
self.l1 = torch.nn.Linear(784,512)
self.l2 = torch.nn.Linear(512,256)
self.l3 = torch.nn.Linear(256,128)
self.l4 = torch.nn.Linear(128,64)
self.l5 = torch.nn.Linear(64,10)
def forward(self,x):
x = x.view(-1,784)
x = F.relu(self.l1(x))
x = F.relu(self.l2(x))
x = F.relu(self.l3(x))
x = F.relu(self.l4(x))
return self.l5(x)
model = Net()
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(),lr=0.01,momentum=0.5)
5、训练和测试
def train(epoch):
running_loss = 0.0
for batch_idx,data in enumerate(train_loader,0):
inputs, target = data
optimizer.zero_grad()
#前向传播+反向传播+更新
outputs = model(inputs)
loss = criterion(outputs,target)
loss.backward()
optimizer.step()
running_loss += loss.item()
if batch_idx % 300 == 299:
print('[%d,%5d] loss: %.3f' % (epoch+1,batch_idx+1,running_loss/300))
running_loss = 0.0
def test():
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images,labels = data
outputs = model(images)
_,predicted = torch.max(outputs.data,dim=1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy on test set: %d %%'% (100*correct/total))
for epoch in range(10):
train(epoch)
test()