from mmdet.apis import init_detector, inference_detector
import mmcv
# 指定模型的配置文件和 checkpoint 文件路径
config_file = 'configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
checkpoint_file = 'checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth'
# 根据配置文件和 checkpoint 文件构建模型
model = init_detector(config_file, checkpoint_file, device='cuda:0')
# 测试单张图片并展示结果
img = 'test.jpg' # 或者 img = mmcv.imread(img),这样图片仅会被读一次
result = inference_detector(model, img)
# 在一个新的窗口中将结果可视化
model.show_result(img, result)
# 或者将可视化结果保存为图片
model.show_result(img, result, out_file='result.jpg')
# 测试视频并展示结果
video = mmcv.VideoReader('video.mp4')
for frame in video:
result = inference_detector(model, frame)
model.show_result(frame, result, wait_time=1)
1.准备数据集(最好把别的数据集转成COCO格式)
2.测试现有模型
# 单 GPU 测试
python tools/test.py \
${CONFIG_FILE} \
${CHECKPOINT_FILE} \
[--out ${RESULT_FILE}] \
[--eval ${EVAL_METRICS}] \
[--show]
# CPU 测试:禁用 GPU 并运行单 GPU 测试脚本
export CUDA_VISIBLE_DEVICES=-1
python tools/test.py \
${CONFIG_FILE} \
${CHECKPOINT_FILE} \
[--out ${RESULT_FILE}] \
[--eval ${EVAL_METRICS}] \
[--show]
# 单节点多 GPU 测试
bash tools/dist_test.sh \
${CONFIG_FILE} \
${CHECKPOINT_FILE} \
${GPU_NUM} \
[--out ${RESULT_FILE}] \
[--eval ${EVAL_METRICS}]
RESULT_FILE
: 结果文件名称,需以 .pkl 形式存储。如果没有声明,则不将结果存储到文件。
EVAL_METRICS
: 需要测试的度量指标。可选值是取决于数据集的,比如 proposal_fast
,proposal
,bbox
,segm
是 COCO 数据集的可选值,mAP
,recall
是 Pascal VOC 数据集的可选值。Cityscapes 数据集可以测试 cityscapes
和所有 COCO 数据集支持的度量指标。
--show
: 如果开启,检测结果将被绘制在图像上,以一个新窗口的形式展示。它只适用于单 GPU 的测试,是用于调试和可视化的。请确保使用此功能时,你的 GUI 可以在环境中打开。否则,你可能会遇到这么一个错误 cannot connect to X server
。
--show-dir
: 如果指明,检测结果将会被绘制在图像上并保存到指定目录。它只适用于单 GPU 的测试,是用于调试和可视化的。即使你的环境中没有 GUI,这个选项也可使用。
--show-score-thr
: 如果指明,得分低于此阈值的检测结果将会被移除。
--cfg-options
: 如果指明,这里的键值对将会被合并到配置文件中。
--eval-options
: 如果指明,这里的键值对将会作为字典参数被传入 dataset.evaluation()
函数中,仅在测试阶段使用。
样例:
#测试并可视化
python tools/test.py \
configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py \
checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
--show
#测试并保存结果
python tools/test.py \
configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py \
checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
--show-dir faster_rcnn_r50_fpn_1x_results
#在 Pascal VOC 数据集上测试 Faster R-CNN,不保存测试结果,测试 mAP
python tools/test.py \
configs/pascal_voc/faster_rcnn_r50_fpn_1x_voc.py \
checkpoints/faster_rcnn_r50_fpn_1x_voc0712_20200624-c9895d40.pth \
--eval mAP
#不使用Ground Truth标注进行测试
#第一步:准换数据集为coco格式,如果格式是 VOC 或者 Cityscapes。转化脚本:
python tools/dataset_converters/images2coco.py \
${IMG_PATH} \ #图片路径
${CLASSES} \ #类列表文本文件名。文本中每一行存储一个类别。
${OUT} \ #输出 json 文件名。 默认保存目录和 IMG_PATH 在同一级。
[--exclude-extensions] #待排除的文件后缀名。
#测试
# 单 GPU 测试
python tools/test.py \
${CONFIG_FILE} \
${CHECKPOINT_FILE} \
--format-only \
--options ${JSONFILE_PREFIX} \
[--show]
# CPU 测试:禁用 GPU 并运行单 GPU 测试脚本
export CUDA_VISIBLE_DEVICES=-1
python tools/test.py \
${CONFIG_FILE} \
${CHECKPOINT_FILE} \
[--out ${RESULT_FILE}] \
[--eval ${EVAL_METRICS}] \
[--show]
# 单节点多 GPU 测试
bash tools/dist_test.sh \
${CONFIG_FILE} \
${CHECKPOINT_FILE} \
${GPU_NUM} \
--format-only \
--options ${JSONFILE_PREFIX} \
[--show]
学习率设置遵守线性扩展规则:比如, 在 4 块 GPU 并且每张 GPU 上有 2 张图片的情况下,设置 lr=0.01
; 在 16 块 GPU 并且每张 GPU 上有 4 张图片的情况下, 设置 lr=0.08
。
使用单GPU训练:
python tools/train.py \
${CONFIG_FILE} \
[optional arguments]
在训练期间,日志文件和 checkpoint 文件将会被保存在工作目录下,它需要通过配置文件中的 work_dir
或者 CLI 参数中的 --work-dir
来指定。
默认情况下,模型将在每轮训练之后在 validation 集上进行测试,测试的频率可以通过设置配置文件来指定:
# 每 12 轮迭代进行一次测试评估
evaluation = dict(interval=12)
--no-validate
(不建议): 在训练期间关闭测试.
--work-dir ${WORK_DIR}
: 覆盖工作目录.
--resume-from ${CHECKPOINT_FILE}
: 从某个 checkpoint 文件继续训练.
--options 'Key=value'
: 覆盖使用的配置文件中的其他设置.
resume-from
既加载了模型的权重和优化器的状态,也会继承指定 checkpoint 的迭代次数,不会重新开始训练。
load-from
则是只加载模型的权重,它的训练是从头开始的,经常被用于微调模型。
使用多GPU训练:
bash ./tools/dist_train.sh \
${CONFIG_FILE} \
${GPU_NUM} \
[optional arguments]
将数据集重新组织为 COCO 格式。
将数据集重新组织为一个中间格式。
实现一个新的数据集。
假设被指文件命名为:mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_balloon.py
,相应保存路径为 configs/balloon/
,配置文件内容如下所示。
# 这个新的配置文件继承自一个原始配置文件,只需要突出必要的修改部分即可
_base_ = 'mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco.py'
# 对头中的类别数量进行修改来匹配数据集的标注
model = dict(
roi_head=dict(
bbox_head=dict(num_classes=1),
mask_head=dict(num_classes=1)))
# 修改数据集相关设置
dataset_type = 'CocoDataset'
classes = ('balloon',)
data = dict(
train=dict(
img_prefix='balloon/train/',
classes=classes,
ann_file='balloon/train/annotation_coco.json'),
val=dict(
img_prefix='balloon/val/',
classes=classes,
ann_file='balloon/val/annotation_coco.json'),
test=dict(
img_prefix='balloon/val/',
classes=classes,
ann_file='balloon/val/annotation_coco.json'))
# 使用预训练的 Mask R-CNN
load_from = 'checkpoints/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco_bbox_mAP-0.408__segm_mAP-0.37_20200504_163245-42aa3d00.pth'
训练:
python tools/train.py configs/balloon/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_balloon.py
测试以及推理:
python tools/test.py configs/balloon/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_balloon.py work_dirs/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_balloon.py/latest.pth --eval bbox segm
python tools/misc/print_config.py /PATH/TO/CONFIG
当运行tools/train.py
和 tools/test.py
时,可以通过 --cfg-options
来修改配置文件
例:
--cfg-options model.backbone.norm_eval=False 主干网络中的所有BN模块都改为train模式。
--cfg-options data.train.pipeline.0.type=LoadImageFromWebcam
--cfg-options workflow="[(train,1),(val,1)]" 引号内不能有空格
config/_base_文件夹下有4个基本组件类型:
dataset、model、schedule(训练策略)、default runtime(运行时默认设置),由_base_下的组件组成的配置,被称为“原始配置”。
Mask R-CNN配置文件实例:
model = dict(
type='MaskRCNN', # 检测器(detector)名称
backbone=dict( # 主干网络的配置文件
type='ResNet', # 主干网络的类别,可用选项请参考 https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/backbones/resnet.py#L308
depth=50, # 主干网络的深度,对于 ResNet 和 ResNext 通常设置为 50 或 101。
num_stages=4, # 主干网络状态(stages)的数目,这些状态产生的特征图作为后续的 head 的输入。
out_indices=(0, 1, 2, 3), # 每个状态产生的特征图输出的索引。
frozen_stages=1, # 第一个状态的权重被冻结
norm_cfg=dict( # 归一化层(norm layer)的配置项。
type='BN', # 归一化层的类别,通常是 BN 或 GN。
requires_grad=True), # 是否训练归一化里的 gamma 和 beta。
norm_eval=True, # 是否冻结 BN 里的统计项。
style='pytorch', # 主干网络的风格,'pytorch' 意思是步长为2的层为 3x3 卷积, 'caffe' 意思是步长为2的层为 1x1 卷积。
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), # 加载通过 ImageNet 预训练的模型
neck=dict(
type='FPN', # 检测器的 neck 是 FPN,我们同样支持 'NASFPN', 'PAFPN' 等,更多细节可以参考 https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/necks/fpn.py#L10。
in_channels=[256, 512, 1024, 2048], # 输入通道数,这与主干网络的输出通道一致
out_channels=256, # 金字塔特征图每一层的输出通道
num_outs=5), # 输出的范围(scales)
rpn_head=dict(
type='RPNHead', # RPN_head 的类型是 'RPNHead', 我们也支持 'GARPNHead' 等,更多细节可以参考 https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/dense_heads/rpn_head.py#L12。
in_channels=256, # 每个输入特征图的输入通道,这与 neck 的输出通道一致。
feat_channels=256, # head 卷积层的特征通道。
anchor_generator=dict( # 锚点(Anchor)生成器的配置。
type='AnchorGenerator', # 大多是方法使用 AnchorGenerator 作为锚点生成器, SSD 检测器使用 `SSDAnchorGenerator`。更多细节请参考 https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/anchor/anchor_generator.py#L10。
scales=[8], # 锚点的基本比例,特征图某一位置的锚点面积为 scale * base_sizes
ratios=[0.5, 1.0, 2.0], # 高度和宽度之间的比率。
strides=[4, 8, 16, 32, 64]), # 锚生成器的步幅。这与 FPN 特征步幅一致。 如果未设置 base_sizes,则当前步幅值将被视为 base_sizes。
bbox_coder=dict( # 在训练和测试期间对框进行编码和解码。
type='DeltaXYWHBBoxCoder', # 框编码器的类别,'DeltaXYWHBBoxCoder' 是最常用的,更多细节请参考 https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/bbox/coder/delta_xywh_bbox_coder.py#L9。
target_means=[0.0, 0.0, 0.0, 0.0], # 用于编码和解码框的目标均值
target_stds=[1.0, 1.0, 1.0, 1.0]), # 用于编码和解码框的标准差
loss_cls=dict( # 分类分支的损失函数配置
type='CrossEntropyLoss', # 分类分支的损失类型,我们也支持 FocalLoss 等。
use_sigmoid=True, # RPN通常进行二分类,所以通常使用sigmoid函数。
los_weight=1.0), # 分类分支的损失权重。
loss_bbox=dict( # 回归分支的损失函数配置。
type='L1Loss', # 损失类型,我们还支持许多 IoU Losses 和 Smooth L1-loss 等,更多细节请参考 https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/losses/smooth_l1_loss.py#L56。
loss_weight=1.0)), # 回归分支的损失权重。
roi_head=dict( # RoIHead 封装了两步(two-stage)/级联(cascade)检测器的第二步。
type='StandardRoIHead', # RoI head 的类型,更多细节请参考 https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/roi_heads/standard_roi_head.py#L10。
bbox_roi_extractor=dict( # 用于 bbox 回归的 RoI 特征提取器。
type='SingleRoIExtractor', # RoI 特征提取器的类型,大多数方法使用 SingleRoIExtractor,更多细节请参考 https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/roi_heads/roi_extractors/single_level.py#L10。
roi_layer=dict( # RoI 层的配置
type='RoIAlign', # RoI 层的类别, 也支持 DeformRoIPoolingPack 和 ModulatedDeformRoIPoolingPack,更多细节请参考 https://github.com/open-mmlab/mmdetection/blob/master/mmdet/ops/roi_align/roi_align.py#L79。
output_size=7, # 特征图的输出大小。
sampling_ratio=0), # 提取 RoI 特征时的采样率。0 表示自适应比率。
out_channels=256, # 提取特征的输出通道。
featmap_strides=[4, 8, 16, 32]), # 多尺度特征图的步幅,应该与主干的架构保持一致。
bbox_head=dict( # RoIHead 中 box head 的配置.
type='Shared2FCBBoxHead', # bbox head 的类别,更多细节请参考 https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/roi_heads/bbox_heads/convfc_bbox_head.py#L177。
in_channels=256, # bbox head 的输入通道。 这与 roi_extractor 中的 out_channels 一致。
fc_out_channels=1024, # FC 层的输出特征通道。
roi_feat_size=7, # 候选区域(Region of Interest)特征的大小。
num_classes=80, # 分类的类别数量。
bbox_coder=dict( # 第二阶段使用的框编码器。
type='DeltaXYWHBBoxCoder', # 框编码器的类别,大多数情况使用 'DeltaXYWHBBoxCoder'。
target_means=[0.0, 0.0, 0.0, 0.0], # 用于编码和解码框的均值
target_stds=[0.1, 0.1, 0.2, 0.2]), # 编码和解码的标准差。因为框更准确,所以值更小,常规设置时 [0.1, 0.1, 0.2, 0.2]。
reg_class_agnostic=False, # 回归是否与类别无关。
loss_cls=dict( # 分类分支的损失函数配置
type='CrossEntropyLoss', # 分类分支的损失类型,我们也支持 FocalLoss 等。
use_sigmoid=False, # 是否使用 sigmoid。
loss_weight=1.0), # 分类分支的损失权重。
loss_bbox=dict( # 回归分支的损失函数配置。
type='L1Loss', # 损失类型,我们还支持许多 IoU Losses 和 Smooth L1-loss 等。
loss_weight=1.0)), # 回归分支的损失权重。
mask_roi_extractor=dict( # 用于 mask 生成的 RoI 特征提取器。
type='SingleRoIExtractor', # RoI 特征提取器的类型,大多数方法使用 SingleRoIExtractor。
roi_layer=dict( # 提取实例分割特征的 RoI 层配置
type='RoIAlign', # RoI 层的类型,也支持 DeformRoIPoolingPack 和 ModulatedDeformRoIPoolingPack。
output_size=14, # 特征图的输出大小。
sampling_ratio=0), # 提取 RoI 特征时的采样率。
out_channels=256, # 提取特征的输出通道。
featmap_strides=[4, 8, 16, 32]), # 多尺度特征图的步幅。
mask_head=dict( # mask 预测 head 模型
type='FCNMaskHead', # mask head 的类型,更多细节请参考 https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/roi_heads/mask_heads/fcn_mask_head.py#L21。
num_convs=4, # mask head 中的卷积层数
in_channels=256, # 输入通道,应与 mask roi extractor 的输出通道一致。
conv_out_channels=256, # 卷积层的输出通道。
num_classes=80, # 要分割的类别数。
loss_mask=dict( # mask 分支的损失函数配置。
type='CrossEntropyLoss', # 用于分割的损失类型。
use_mask=True, # 是否只在正确的类中训练 mask。
loss_weight=1.0)))) # mask 分支的损失权重.
train_cfg = dict( # rpn 和 rcnn 训练超参数的配置
rpn=dict( # rpn 的训练配置
assigner=dict( # 分配器(assigner)的配置
type='MaxIoUAssigner', # 分配器的类型,MaxIoUAssigner 用于许多常见的检测器,更多细节请参考 https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/bbox/assigners/max_iou_assigner.py#L10。
pos_iou_thr=0.7, # IoU >= 0.7(阈值) 被视为正样本。
neg_iou_thr=0.3, # IoU < 0.3(阈值) 被视为负样本。
min_pos_iou=0.3, # 将框作为正样本的最小 IoU 阈值。
match_low_quality=True, # 是否匹配低质量的框(更多细节见 API 文档).
ignore_iof_thr=-1), # 忽略 bbox 的 IoF 阈值。
sampler=dict( # 正/负采样器(sampler)的配置
type='RandomSampler', # 采样器类型,还支持 PseudoSampler 和其他采样器,更多细节请参考 https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/bbox/samplers/random_sampler.py#L8。
num=256, # 样本数量。
pos_fraction=0.5, # 正样本占总样本的比例。
neg_pos_ub=-1, # 基于正样本数量的负样本上限。
add_gt_as_proposals=False), # 采样后是否添加 GT 作为 proposal。
allowed_border=-1, # 填充有效锚点后允许的边框。
pos_weight=-1, # 训练期间正样本的权重。
debug=False), # 是否设置调试(debug)模式
rpn_proposal=dict( # 在训练期间生成 proposals 的配置
nms_across_levels=False, # 是否对跨层的 box 做 NMS。仅适用于 `GARPNHead` ,naive rpn 不支持 nms cross levels。
nms_pre=2000, # NMS 前的 box 数
nms_post=1000, # NMS 要保留的 box 的数量,只在 GARPNHHead 中起作用。
max_per_img=1000, # NMS 后要保留的 box 数量。
nms=dict( # NMS 的配置
type='nms', # NMS 的类别
iou_threshold=0.7 # NMS 的阈值
),
min_bbox_size=0), # 允许的最小 box 尺寸
rcnn=dict( # roi head 的配置。
assigner=dict( # 第二阶段分配器的配置,这与 rpn 中的不同
type='MaxIoUAssigner', # 分配器的类型,MaxIoUAssigner 目前用于所有 roi_heads。更多细节请参考 https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/bbox/assigners/max_iou_assigner.py#L10。
pos_iou_thr=0.5, # IoU >= 0.5(阈值)被认为是正样本。
neg_iou_thr=0.5, # IoU < 0.5(阈值)被认为是负样本。
min_pos_iou=0.5, # 将 box 作为正样本的最小 IoU 阈值
match_low_quality=False, # 是否匹配低质量下的 box(有关更多详细信息,请参阅 API 文档)。
ignore_iof_thr=-1), # 忽略 bbox 的 IoF 阈值
sampler=dict(
type='RandomSampler', #采样器的类型,还支持 PseudoSampler 和其他采样器,更多细节请参考 https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/bbox/samplers/random_sampler.py#L8。
num=512, # 样本数量
pos_fraction=0.25, # 正样本占总样本的比例。.
neg_pos_ub=-1, # 基于正样本数量的负样本上限。.
add_gt_as_proposals=True
), # 采样后是否添加 GT 作为 proposal。
mask_size=28, # mask 的大小
pos_weight=-1, # 训练期间正样本的权重。
debug=False)) # 是否设置调试模式。
test_cfg = dict( # 用于测试 rpn 和 rcnn 超参数的配置
rpn=dict( # 测试阶段生成 proposals 的配置
nms_across_levels=False, # 是否对跨层的 box 做 NMS。仅适用于`GARPNHead`,naive rpn 不支持做 NMS cross levels。
nms_pre=1000, # NMS 前的 box 数
nms_post=1000, # NMS 要保留的 box 的数量,只在`GARPNHHead`中起作用。
max_per_img=1000, # NMS 后要保留的 box 数量
nms=dict( # NMS 的配置
type='nms', # NMS 的类型
iou_threshold=0.7 # NMS 阈值
),
min_bbox_size=0), # box 允许的最小尺寸
rcnn=dict( # roi heads 的配置
score_thr=0.05, # bbox 的分数阈值
nms=dict( # 第二步的 NMS 配置
type='nms', # NMS 的类型
iou_thr=0.5), # NMS 的阈值
max_per_img=100, # 每张图像的最大检测次数
mask_thr_binary=0.5)) # mask 预处的阈值
dataset_type = 'CocoDataset' # 数据集类型,这将被用来定义数据集。
data_root = 'data/coco/' # 数据的根路径。
img_norm_cfg = dict( # 图像归一化配置,用来归一化输入的图像。
mean=[123.675, 116.28, 103.53], # 预训练里用于预训练主干网络模型的平均值。
std=[58.395, 57.12, 57.375], # 预训练里用于预训练主干网络模型的标准差。
to_rgb=True
) # 预训练里用于预训练主干网络的图像的通道顺序。
train_pipeline = [ # 训练流程
dict(type='LoadImageFromFile'), # 第 1 个流程,从文件路径里加载图像。
dict(
type='LoadAnnotations', # 第 2 个流程,对于当前图像,加载它的注释信息。
with_bbox=True, # 是否使用标注框(bounding box), 目标检测需要设置为 True。
with_mask=True, # 是否使用 instance mask,实例分割需要设置为 True。
poly2mask=False), # 是否将 polygon mask 转化为 instance mask, 设置为 False 以加速和节省内存。
dict(
type='Resize', # 变化图像和其注释大小的数据增广的流程。
img_scale=(1333, 800), # 图像的最大规模。
keep_ratio=True
), # 是否保持图像的长宽比。
dict(
type='RandomFlip', # 翻转图像和其注释大小的数据增广的流程。
flip_ratio=0.5), # 翻转图像的概率。
dict(
type='Normalize', # 归一化当前图像的数据增广的流程。
mean=[123.675, 116.28, 103.53], # 这些键与 img_norm_cfg 一致,因为 img_norm_cfg 被
std=[58.395, 57.12, 57.375], # 用作参数。
to_rgb=True),
dict(
type='Pad', # 填充当前图像到指定大小的数据增广的流程。
size_divisor=32), # 填充图像可以被当前值整除。
dict(type='DefaultFormatBundle'), # 流程里收集数据的默认格式捆。
dict(
type='Collect', # 决定数据中哪些键应该传递给检测器的流程
keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks'])
]
test_pipeline = [
dict(type='LoadImageFromFile'), # 第 1 个流程,从文件路径里加载图像。
dict(
type='MultiScaleFlipAug', # 封装测试时数据增广(test time augmentations)。
img_scale=(1333, 800), # 决定测试时可改变图像的最大规模。用于改变图像大小的流程。
flip=False, # 测试时是否翻转图像。
transforms=[
dict(type='Resize', # 使用改变图像大小的数据增广。
keep_ratio=True), # 是否保持宽和高的比例,这里的图像比例设置将覆盖上面的图像规模大小的设置。
dict(type='RandomFlip'), # 考虑到 RandomFlip 已经被添加到流程里,当 flip=False 时它将不被使用。
dict(
type='Normalize', # 归一化配置项,值来自 img_norm_cfg。
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(
type='Pad', # 将配置传递给可被 32 整除的图像。
size_divisor=32),
dict(
type='ImageToTensor', # 将图像转为张量
keys=['img']),
dict(
type='Collect', # 收集测试时必须的键的收集流程。
keys=['img'])
])
]
data = dict(
samples_per_gpu=2, # 单个 GPU 的 Batch size
workers_per_gpu=2, # 单个 GPU 分配的数据加载线程数
train=dict( # 训练数据集配置
type='CocoDataset', # 数据集的类别, 更多细节请参考 https://github.com/open-mmlab/mmdetection/blob/master/mmdet/datasets/coco.py#L19。
ann_file='data/coco/annotations/instances_train2017.json', # 注释文件路径
img_prefix='data/coco/train2017/', # 图片路径前缀
pipeline=[ # 流程, 这是由之前创建的 train_pipeline 传递的。
dict(type='LoadImageFromFile'),
dict(
type='LoadAnnotations',
with_bbox=True,
with_mask=True,
poly2mask=False),
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(
type='Collect',
keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks'])
]),
val=dict( # 验证数据集的配置
type='CocoDataset',
ann_file='data/coco/annotations/instances_val2017.json',
img_prefix='data/coco/val2017/',
pipeline=[ # 由之前创建的 test_pipeline 传递的流程。
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]),
test=dict( # 测试数据集配置,修改测试开发/测试(test-dev/test)提交的 ann_file
type='CocoDataset',
ann_file='data/coco/annotations/instances_val2017.json',
img_prefix='data/coco/val2017/',
pipeline=[ # 由之前创建的 test_pipeline 传递的流程。
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
],
samples_per_gpu=2 # 单个 GPU 测试时的 Batch size
))
evaluation = dict( # evaluation hook 的配置,更多细节请参考 https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/evaluation/eval_hooks.py#L7。
interval=1, # 验证的间隔。
metric=['bbox', 'segm']) # 验证期间使用的指标。
optimizer = dict( # 用于构建优化器的配置文件。支持 PyTorch 中的所有优化器,同时它们的参数与 PyTorch 里的优化器参数一致。
type='SGD', # 优化器种类,更多细节可参考 https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/optimizer/default_constructor.py#L13。
lr=0.02, # 优化器的学习率,参数的使用细节请参照对应的 PyTorch 文档。
momentum=0.9, # 动量(Momentum)
weight_decay=0.0001) # SGD 的衰减权重(weight decay)。
optimizer_config = dict( # optimizer hook 的配置文件,执行细节请参考 https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/optimizer.py#L8。
grad_clip=None) # 大多数方法不使用梯度限制(grad_clip)。
lr_config = dict( # 学习率调整配置,用于注册 LrUpdater hook。
policy='step', # 调度流程(scheduler)的策略,也支持 CosineAnnealing, Cyclic, 等。请从 https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/lr_updater.py#L9 参考 LrUpdater 的细节。
warmup='linear', # 预热(warmup)策略,也支持 `exp` 和 `constant`。
warmup_iters=500, # 预热的迭代次数
warmup_ratio=
0.001, # 用于热身的起始学习率的比率
step=[8, 11]) # 衰减学习率的起止回合数
runner = dict(
type='EpochBasedRunner', # 将使用的 runner 的类别 (例如 IterBasedRunner 或 EpochBasedRunner)。
max_epochs=12) # runner 总回合数, 对于 IterBasedRunner 使用 `max_iters`
checkpoint_config = dict( # Checkpoint hook 的配置文件。执行时请参考 https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/checkpoint.py。
interval=1) # 保存的间隔是 1。
log_config = dict( # register logger hook 的配置文件。
interval=50, # 打印日志的间隔
hooks=[
# dict(type='TensorboardLoggerHook') # 同样支持 Tensorboard 日志
dict(type='TextLoggerHook')
]) # 用于记录训练过程的记录器(logger)。
dist_params = dict(backend='nccl') # 用于设置分布式训练的参数,端口也同样可被设置。
log_level = 'INFO' # 日志的级别。
load_from = None # 从一个给定路径里加载模型作为预训练模型,它并不会消耗训练时间。
resume_from = None # 从给定路径里恢复检查点(checkpoints),训练模式将从检查点保存的轮次开始恢复训练。
workflow = [('train', 1)] # runner 的工作流程,[('train', 1)] 表示只有一个工作流且工作流仅执行一次。根据 total_epochs 工作流训练 12个回合。
work_dir = 'work_dir' # 用于保存当前实验的模型检查点和日志的目录。
1.把数据集转为coco就完事了。
2.为自定义数据集修改配置文件:(涉及两个方面)
data
部分。需要在 data.train
、data.val
和 data.test
中添加 classes
model
部分中的 num_classes
。需要将默认值修改为自定义数据集中的类别数。
# 新的配置来自基础的配置以更好地说明需要修改的地方
_base_ = './cascade_mask_rcnn_r50_fpn_1x_coco.py'
# 1. 数据集设定
dataset_type = 'CocoDataset'
classes = ('a', 'b', 'c', 'd', 'e')
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
train=dict(
type=dataset_type,
# 将类别名字添加至 `classes` 字段中
classes=classes,
ann_file='path/to/your/train/annotation_data',
img_prefix='path/to/your/train/image_data'),
val=dict(
type=dataset_type,
# 将类别名字添加至 `classes` 字段中
classes=classes,
ann_file='path/to/your/val/annotation_data',
img_prefix='path/to/your/val/image_data'),
test=dict(
type=dataset_type,
# 将类别名字添加至 `classes` 字段中
classes=classes,
ann_file='path/to/your/test/annotation_data',
img_prefix='path/to/your/test/image_data'))
# 2. 模型设置
# 将所有的 `num_classes` 默认值修改为5(原来为80)
model = dict(
roi_head=dict(
bbox_head=[
dict(
type='Shared2FCBBoxHead',
# 将所有的 `num_classes` 默认值修改为 5(原来为 80)
num_classes=5),
dict(
type='Shared2FCBBoxHead',
# 将所有的 `num_classes` 默认值修改为 5(原来为 80)
num_classes=5),
dict(
type='Shared2FCBBoxHead',
# 将所有的 `num_classes` 默认值修改为 5(原来为 80)
num_classes=5)],
# 将所有的 `num_classes` 默认值修改为 5(原来为 80)
mask_head=dict(num_classes=5)))
数据加载(data loading)、预处理(pre-processing)、格式变化(formatting)和测试时数据增强(test-time augmentation)
1.在任意文件里写一个新的流程,例如在 my_pipeline.py
,它以一个字典作为输入并且输出一个字典:
import random
from mmdet.datasets import PIPELINES
@PIPELINES.register_module()
class MyTransform:
"""Add your transform
Args:
p (float): Probability of shifts. Default 0.5.
"""
def __init__(self, p=0.5):
self.p = p
def __call__(self, results):
if random.random() > self.p:
results['dummy'] = True
return results
2.
在配置文件里调用并使用你写的数据处理流程,需要确保你的训练脚本能够正确导入新增模块:
custom_imports = dict(imports=['path.to.my_pipeline'], allow_failed_imports=False)
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='MyTransform', p=0.2),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
简单把模型的各个组件分为5类:backbone、neck、head、roi extractor、loss。
1.新建一个文件mmdet/models/backbones/mobilenet.py
import torch.nn as nn
from ..builder import BACKBONES
@BACKBONES.register_module()
class MobileNet(nn.Module):
def __init__(self, arg1, arg2):
pass
def forward(self, x): # should return a tuple
pass
2.导入该模块到:mmdet/models/backbones/__init__.py
from .mobilenet import MobileNet
或添加:——————>到配置文件中,以避免代码被修改。?
custom_imports = dict(
imports=['mmdet.models.backbones.mobilenet'],
allow_failed_imports=False)
3.在配置文件中使用该backbone。
model = dict(
...
backbone=dict(
type='MobileNet',
arg1=xxx,
arg2=xxx),
...
新建一个文件:mmdet/models/necks/pafpn.py
from ..builder import NECKS
@NECKS.register_module()
class PAFPN(nn.Module):
def __init__(self,
in_channels,
out_channels,
num_outs,
start_level=0,
end_level=-1,
add_extra_convs=False):
pass
def forward(self, inputs):
# implementation is ignored
pass
2.导入该模块到:mmdet/models/necks/__init__.py
from .pafpn import PAFPN
或添加————————>到配置文件以免原始代码被修改。?
custom_imports = dict(
imports=['mmdet.models.necks.pafpn.py'],
allow_failed_imports=False)
3.修改配置文件:
neck=dict(
type='PAFPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
num_outs=5)
换头和换loss是一样的。
损失的计算过程:
设置采样方法为对正负样本进行采样。
通过损失核函数获取元素或者样本损失。
通过权重张量来给损失逐元素权重。
把损失张量归纳为一个标量。
用一个张量给当前损失一个权重。
对于一些损失函数,需要采样策略来避免正负样本之间的不平衡。
例如,在RPN head中使用CrossEntropyLoss
时,我们需要在train_cfg
中设置RandomSampler
train_cfg=dict(
rpn=dict(
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False))
对于其他一些具有正负样本平衡机制的损失,例如 Focal Loss、GHMC 和 QualityFocalLoss,不再需要进行采样。
其他的就没啥,在配置文件中微调就行了。
从_base_/models/mask_rcnn_r50_fpn.py中继承基本结构
要是用Cityscapes数据集,那也要继承_base_/datasets/cityscapes_instance.py
对于训练过程的运行设置部分:新配置需要从_base_/default_runtime.py中继承。
只需要对 roi_head 中的 num_classes
进行修改。修改后除了最后的预测模型的 Head 之外,预训练模型的权重的大部分都会被重新使用。
model = dict(
pretrained=None,
roi_head=dict(
bbox_head=dict(
type='Shared2FCBBoxHead',
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=8,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2]),
reg_class_agnostic=False,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
mask_head=dict(
type='FCNMaskHead',
num_convs=4,
in_channels=256,
conv_out_channels=256,
num_classes=8,
loss_mask=dict(
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))))
一般不用修改。
微调超参数与默认的训练策略不同。它通常需要更小的学习率和更少的训练回合。
# 优化器
# batch size 为 8 时的 lr 配置
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
# 学习策略
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[7])
# lr_config 中的 max_epochs 和 step 需要针对自定义数据集进行专门调整
runner = dict(max_epochs=8)
log_config = dict(interval=100)
load_from = 'https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco_bbox_mAP-0.408__segm_mAP-0.37_20200504_163245-42aa3d00.pth' # noqa
暂时用不着
使用在MMClassification中实现的骨干网络
MMDet、MMCls、MMSeg 中的模型注册表都继承自 MMCV 中的根注册表,允许这些存储库直接使用彼此已经实现的模块。 因此用户可以在 MMDetection 中使用来自 MMClassification 的骨干网络,而无需实现MMClassification 中已经存在的网络。
通过 MMClassification 在 TIMM 中使用骨干网络_base_ = [
'../_base_/models/retinanet_r50_fpn.py',
'../_base_/datasets/coco_detection.py',
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
# please install mmcls>=0.20.0
# import mmcls.models to trigger register_module in mmcls
custom_imports = dict(imports=['mmcls.models'], allow_failed_imports=False)
pretrained = 'https://download.openmmlab.com/mmclassification/v0/mobilenet_v3/convert/mobilenet_v3_small-8427ecf0.pth'
model = dict(
backbone=dict(
_delete_=True, # 将 _base_ 中关于 backbone 的字段删除
type='mmcls.MobileNetV3', # 使用 mmcls 中的 MobileNetV3
arch='small',
out_indices=(3, 8, 11), # 修改 out_indices
init_cfg=dict(
type='Pretrained',
checkpoint=pretrained,
prefix='backbone.')), # MMCls 中骨干网络的预训练权重含义 prefix='backbone.',为了正常加载权重,需要把这个 prefix 去掉。
# 修改 in_channels
neck=dict(in_channels=[24, 48, 96], start_level=0))
由于 MMClassification 提供了 PyTorch Image Models (timm
) 骨干网络的封装,用户也可以通过 MMClassification 直接使用 timm
中的骨干网络。假设想将 EfficientNet-B1 作为 RetinaNet
的骨干网络,则配置文件如下。
# https://github.com/open-mmlab/mmdetection/blob/master/configs/timm_example/retinanet_timm_efficientnet_b1_fpn_1x_coco.py
_base_ = [
'../_base_/models/retinanet_r50_fpn.py',
'../_base_/datasets/coco_detection.py',
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
# please install mmcls>=0.20.0
# import mmcls.models to trigger register_module in mmcls
custom_imports = dict(imports=['mmcls.models'], allow_failed_imports=False)
model = dict(
backbone=dict(
_delete_=True, # 将 _base_ 中关于 backbone 的字段删除
type='mmcls.TIMMBackbone', # 使用 mmcls 中 timm 骨干网络
model_name='efficientnet_b1',
features_only=True,
pretrained=True,
out_indices=(1, 2, 3, 4)), # 修改 out_indices
neck=dict(in_channels=[24, 40, 112, 320])) # 修改 in_channels
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
如果你想在训练中使用 Mosaic
,那么请确保你同时使用 MultiImageMixDataset
。以 Faster R-CNN
算法为例,你可以通过如下做法实现:
# 直接打开 configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py ,增添如下字段
data_root = 'data/coco/'
dataset_type = 'CocoDataset'
img_scale=(1333, 800)
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='Mosaic', img_scale=img_scale, pad_val=114.0),
dict(
type='RandomAffine',
scaling_ratio_range=(0.1, 2),
border=(-img_scale[0] // 2, -img_scale[1] // 2)), # 图像经过马赛克处理后会放大4倍,所以我们使用仿射变换来恢复图像的大小。
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]
train_dataset = dict(
_delete_ = True, # 删除不必要的设置
type='MultiImageMixDataset',
dataset=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_train2017.json',
img_prefix=data_root + 'train2017/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True)
],
filter_empty_gt=False,
),
pipeline=train_pipeline
)
data = dict(
train=train_dataset
)