mmdetection官网教程

使用:

使用现有模型进行推理:

from mmdet.apis import init_detector, inference_detector
import mmcv

# 指定模型的配置文件和 checkpoint 文件路径
config_file = 'configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
checkpoint_file = 'checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth'

# 根据配置文件和 checkpoint 文件构建模型
model = init_detector(config_file, checkpoint_file, device='cuda:0')

# 测试单张图片并展示结果
img = 'test.jpg'  # 或者 img = mmcv.imread(img),这样图片仅会被读一次
result = inference_detector(model, img)
# 在一个新的窗口中将结果可视化
model.show_result(img, result)
# 或者将可视化结果保存为图片
model.show_result(img, result, out_file='result.jpg')

# 测试视频并展示结果
video = mmcv.VideoReader('video.mp4')
for frame in video:
    result = inference_detector(model, frame)
    model.show_result(frame, result, wait_time=1)

在标准数据集上测试现有模型:

1.准备数据集(最好把别的数据集转成COCO格式)

2.测试现有模型

# 单 GPU 测试
python tools/test.py \
    ${CONFIG_FILE} \
    ${CHECKPOINT_FILE} \
    [--out ${RESULT_FILE}] \
    [--eval ${EVAL_METRICS}] \
    [--show]

# CPU 测试:禁用 GPU 并运行单 GPU 测试脚本
export CUDA_VISIBLE_DEVICES=-1
python tools/test.py \
    ${CONFIG_FILE} \
    ${CHECKPOINT_FILE} \
    [--out ${RESULT_FILE}] \
    [--eval ${EVAL_METRICS}] \
    [--show]

# 单节点多 GPU 测试
bash tools/dist_test.sh \
    ${CONFIG_FILE} \
    ${CHECKPOINT_FILE} \
    ${GPU_NUM} \
    [--out ${RESULT_FILE}] \
    [--eval ${EVAL_METRICS}]
  • RESULT_FILE: 结果文件名称,需以 .pkl 形式存储。如果没有声明,则不将结果存储到文件。

  • EVAL_METRICS: 需要测试的度量指标。可选值是取决于数据集的,比如 proposal_fastproposalbboxsegm 是 COCO 数据集的可选值,mAPrecall 是 Pascal VOC 数据集的可选值。Cityscapes 数据集可以测试 cityscapes 和所有 COCO 数据集支持的度量指标。

  • --show: 如果开启,检测结果将被绘制在图像上,以一个新窗口的形式展示。它只适用于单 GPU 的测试,是用于调试和可视化的。请确保使用此功能时,你的 GUI 可以在环境中打开。否则,你可能会遇到这么一个错误 cannot connect to X server

  • --show-dir: 如果指明,检测结果将会被绘制在图像上并保存到指定目录。它只适用于单 GPU 的测试,是用于调试和可视化的。即使你的环境中没有 GUI,这个选项也可使用。

  • --show-score-thr: 如果指明,得分低于此阈值的检测结果将会被移除。

  • --cfg-options: 如果指明,这里的键值对将会被合并到配置文件中。

  • --eval-options: 如果指明,这里的键值对将会作为字典参数被传入 dataset.evaluation() 函数中,仅在测试阶段使用。

样例:

#测试并可视化
python tools/test.py \
    configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py \
    checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
    --show

#测试并保存结果
python tools/test.py \
    configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py \
    checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
    --show-dir faster_rcnn_r50_fpn_1x_results

#在 Pascal VOC 数据集上测试 Faster R-CNN,不保存测试结果,测试 mAP
python tools/test.py \
    configs/pascal_voc/faster_rcnn_r50_fpn_1x_voc.py \
    checkpoints/faster_rcnn_r50_fpn_1x_voc0712_20200624-c9895d40.pth \
    --eval mAP

#不使用Ground Truth标注进行测试

#第一步:准换数据集为coco格式,如果格式是 VOC 或者 Cityscapes。转化脚本:
python tools/dataset_converters/images2coco.py \
    ${IMG_PATH} \    #图片路径
    ${CLASSES} \    #类列表文本文件名。文本中每一行存储一个类别。
    ${OUT} \    #输出 json 文件名。 默认保存目录和 IMG_PATH 在同一级。
    [--exclude-extensions]    #待排除的文件后缀名。
    
#测试
# 单 GPU 测试
python tools/test.py \
    ${CONFIG_FILE} \
    ${CHECKPOINT_FILE} \
    --format-only \
    --options ${JSONFILE_PREFIX} \
    [--show]

# CPU 测试:禁用 GPU 并运行单 GPU 测试脚本
export CUDA_VISIBLE_DEVICES=-1
python tools/test.py \
    ${CONFIG_FILE} \
    ${CHECKPOINT_FILE} \
    [--out ${RESULT_FILE}] \
    [--eval ${EVAL_METRICS}] \
    [--show]

# 单节点多 GPU 测试
bash tools/dist_test.sh \
    ${CONFIG_FILE} \
    ${CHECKPOINT_FILE} \
    ${GPU_NUM} \
    --format-only \
    --options ${JSONFILE_PREFIX} \
    [--show]

在标准数据集上训练预定义的模型

学习率设置遵守线性扩展规则:比如, 在 4 块 GPU 并且每张 GPU 上有 2 张图片的情况下,设置 lr=0.01; 在 16 块 GPU 并且每张 GPU 上有 4 张图片的情况下, 设置 lr=0.08

使用单GPU训练:

python tools/train.py \
    ${CONFIG_FILE} \
    [optional arguments]

在训练期间,日志文件和 checkpoint 文件将会被保存在工作目录下,它需要通过配置文件中的 work_dir 或者 CLI 参数中的 --work-dir 来指定。

默认情况下,模型将在每轮训练之后在 validation 集上进行测试,测试的频率可以通过设置配置文件来指定:

# 每 12 轮迭代进行一次测试评估
evaluation = dict(interval=12)
  • --no-validate (不建议): 在训练期间关闭测试.

  • --work-dir ${WORK_DIR}: 覆盖工作目录.

  • --resume-from ${CHECKPOINT_FILE}: 从某个 checkpoint 文件继续训练.

  • --options 'Key=value': 覆盖使用的配置文件中的其他设置.

resume-from 既加载了模型的权重和优化器的状态,也会继承指定 checkpoint 的迭代次数,不会重新开始训练。

load-from 则是只加载模型的权重,它的训练是从头开始的,经常被用于微调模型。

使用多GPU训练:

bash ./tools/dist_train.sh \
    ${CONFIG_FILE} \
    ${GPU_NUM} \
    [optional arguments]

在自定义数据集上进行训练

1.准备数据集:  

  1. 将数据集重新组织为 COCO 格式。

  2. 将数据集重新组织为一个中间格式。

  3. 实现一个新的数据集。

2.准备配置文件

假设被指文件命名为:mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_balloon.py,相应保存路径为 configs/balloon/,配置文件内容如下所示。

# 这个新的配置文件继承自一个原始配置文件,只需要突出必要的修改部分即可
_base_ = 'mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco.py'

# 对头中的类别数量进行修改来匹配数据集的标注
model = dict(
    roi_head=dict(
        bbox_head=dict(num_classes=1),
        mask_head=dict(num_classes=1)))

# 修改数据集相关设置
dataset_type = 'CocoDataset'
classes = ('balloon',)
data = dict(
    train=dict(
        img_prefix='balloon/train/',
        classes=classes,
        ann_file='balloon/train/annotation_coco.json'),
    val=dict(
        img_prefix='balloon/val/',
        classes=classes,
        ann_file='balloon/val/annotation_coco.json'),
    test=dict(
        img_prefix='balloon/val/',
        classes=classes,
        ann_file='balloon/val/annotation_coco.json'))

# 使用预训练的 Mask R-CNN 
load_from = 'checkpoints/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco_bbox_mAP-0.408__segm_mAP-0.37_20200504_163245-42aa3d00.pth'

训练:

python tools/train.py configs/balloon/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_balloon.py

测试以及推理:

python tools/test.py configs/balloon/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_balloon.py work_dirs/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_balloon.py/latest.pth --eval bbox segm

学习配置文件:

查看完整配置:

python tools/misc/print_config.py /PATH/TO/CONFIG

当运行tools/train.py 和 tools/test.py 时,可以通过 --cfg-options 来修改配置文件

例:

--cfg-options  model.backbone.norm_eval=False        主干网络中的所有BN模块都改为train模式。

--cfg-options  data.train.pipeline.0.type=LoadImageFromWebcam

--cfg-options  workflow="[(train,1),(val,1)]"        引号内不能有空格

配置文件结构:

config/_base_文件夹下有4个基本组件类型:

dataset、model、schedule(训练策略)、default runtime(运行时默认设置),由_base_下的组件组成的配置,被称为“原始配置”。

Mask R-CNN配置文件实例:

model = dict(
    type='MaskRCNN',  # 检测器(detector)名称
    backbone=dict(  # 主干网络的配置文件
        type='ResNet',  # 主干网络的类别,可用选项请参考 https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/backbones/resnet.py#L308
        depth=50,  # 主干网络的深度,对于 ResNet 和 ResNext 通常设置为 50 或 101。
        num_stages=4,  # 主干网络状态(stages)的数目,这些状态产生的特征图作为后续的 head 的输入。
        out_indices=(0, 1, 2, 3),  # 每个状态产生的特征图输出的索引。
        frozen_stages=1,  # 第一个状态的权重被冻结
        norm_cfg=dict(  # 归一化层(norm layer)的配置项。
            type='BN',  # 归一化层的类别,通常是 BN 或 GN。
            requires_grad=True),  # 是否训练归一化里的 gamma 和 beta。
        norm_eval=True,  # 是否冻结 BN 里的统计项。
        style='pytorch',  # 主干网络的风格,'pytorch' 意思是步长为2的层为 3x3 卷积, 'caffe' 意思是步长为2的层为 1x1 卷积。
       init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),  # 加载通过 ImageNet 预训练的模型
    neck=dict(
        type='FPN',  # 检测器的 neck 是 FPN,我们同样支持 'NASFPN', 'PAFPN' 等,更多细节可以参考 https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/necks/fpn.py#L10。
        in_channels=[256, 512, 1024, 2048],  # 输入通道数,这与主干网络的输出通道一致
        out_channels=256,  # 金字塔特征图每一层的输出通道
        num_outs=5),  # 输出的范围(scales)
    rpn_head=dict(
        type='RPNHead',  # RPN_head 的类型是 'RPNHead', 我们也支持 'GARPNHead' 等,更多细节可以参考 https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/dense_heads/rpn_head.py#L12。
        in_channels=256,  # 每个输入特征图的输入通道,这与 neck 的输出通道一致。
        feat_channels=256,  # head 卷积层的特征通道。
        anchor_generator=dict(  # 锚点(Anchor)生成器的配置。
            type='AnchorGenerator',  # 大多是方法使用 AnchorGenerator 作为锚点生成器, SSD 检测器使用 `SSDAnchorGenerator`。更多细节请参考 https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/anchor/anchor_generator.py#L10。
            scales=[8],  # 锚点的基本比例,特征图某一位置的锚点面积为 scale * base_sizes
            ratios=[0.5, 1.0, 2.0],  # 高度和宽度之间的比率。
            strides=[4, 8, 16, 32, 64]),  # 锚生成器的步幅。这与 FPN 特征步幅一致。 如果未设置 base_sizes,则当前步幅值将被视为 base_sizes。
        bbox_coder=dict(  # 在训练和测试期间对框进行编码和解码。
            type='DeltaXYWHBBoxCoder',  # 框编码器的类别,'DeltaXYWHBBoxCoder' 是最常用的,更多细节请参考 https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/bbox/coder/delta_xywh_bbox_coder.py#L9。
            target_means=[0.0, 0.0, 0.0, 0.0],  # 用于编码和解码框的目标均值
            target_stds=[1.0, 1.0, 1.0, 1.0]),  # 用于编码和解码框的标准差
        loss_cls=dict(  # 分类分支的损失函数配置
            type='CrossEntropyLoss',  # 分类分支的损失类型,我们也支持 FocalLoss 等。
            use_sigmoid=True,  # RPN通常进行二分类,所以通常使用sigmoid函数。
            los_weight=1.0),  # 分类分支的损失权重。
        loss_bbox=dict(  # 回归分支的损失函数配置。
            type='L1Loss',  # 损失类型,我们还支持许多 IoU Losses 和 Smooth L1-loss 等,更多细节请参考 https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/losses/smooth_l1_loss.py#L56。
            loss_weight=1.0)),  # 回归分支的损失权重。
    roi_head=dict(  # RoIHead 封装了两步(two-stage)/级联(cascade)检测器的第二步。
        type='StandardRoIHead',  # RoI head 的类型,更多细节请参考 https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/roi_heads/standard_roi_head.py#L10。
        bbox_roi_extractor=dict(  # 用于 bbox 回归的 RoI 特征提取器。
            type='SingleRoIExtractor',  # RoI 特征提取器的类型,大多数方法使用  SingleRoIExtractor,更多细节请参考 https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/roi_heads/roi_extractors/single_level.py#L10。
            roi_layer=dict(  # RoI 层的配置
                type='RoIAlign',  # RoI 层的类别, 也支持 DeformRoIPoolingPack 和 ModulatedDeformRoIPoolingPack,更多细节请参考 https://github.com/open-mmlab/mmdetection/blob/master/mmdet/ops/roi_align/roi_align.py#L79。
                output_size=7,  # 特征图的输出大小。
                sampling_ratio=0),  # 提取 RoI 特征时的采样率。0 表示自适应比率。
            out_channels=256,  # 提取特征的输出通道。
            featmap_strides=[4, 8, 16, 32]),  # 多尺度特征图的步幅,应该与主干的架构保持一致。
        bbox_head=dict(  # RoIHead 中 box head 的配置.
            type='Shared2FCBBoxHead',  # bbox head 的类别,更多细节请参考 https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/roi_heads/bbox_heads/convfc_bbox_head.py#L177。
            in_channels=256,  # bbox head 的输入通道。 这与 roi_extractor 中的 out_channels 一致。
            fc_out_channels=1024,  # FC 层的输出特征通道。
            roi_feat_size=7,  # 候选区域(Region of Interest)特征的大小。
            num_classes=80,  # 分类的类别数量。
            bbox_coder=dict(  # 第二阶段使用的框编码器。
                type='DeltaXYWHBBoxCoder',  # 框编码器的类别,大多数情况使用 'DeltaXYWHBBoxCoder'。
                target_means=[0.0, 0.0, 0.0, 0.0],  # 用于编码和解码框的均值
                target_stds=[0.1, 0.1, 0.2, 0.2]),  # 编码和解码的标准差。因为框更准确,所以值更小,常规设置时 [0.1, 0.1, 0.2, 0.2]。
            reg_class_agnostic=False,  # 回归是否与类别无关。
            loss_cls=dict(  # 分类分支的损失函数配置
                type='CrossEntropyLoss',  # 分类分支的损失类型,我们也支持 FocalLoss 等。
                use_sigmoid=False,  # 是否使用 sigmoid。
                loss_weight=1.0),  # 分类分支的损失权重。
            loss_bbox=dict(  # 回归分支的损失函数配置。
                type='L1Loss',  # 损失类型,我们还支持许多 IoU Losses 和 Smooth L1-loss 等。
                loss_weight=1.0)),  # 回归分支的损失权重。
        mask_roi_extractor=dict(  # 用于 mask 生成的 RoI 特征提取器。
            type='SingleRoIExtractor',  # RoI 特征提取器的类型,大多数方法使用 SingleRoIExtractor。
            roi_layer=dict(  # 提取实例分割特征的 RoI 层配置
                type='RoIAlign',  # RoI 层的类型,也支持 DeformRoIPoolingPack 和 ModulatedDeformRoIPoolingPack。
                output_size=14,  # 特征图的输出大小。
                sampling_ratio=0),  # 提取 RoI 特征时的采样率。
            out_channels=256,  # 提取特征的输出通道。
            featmap_strides=[4, 8, 16, 32]),  # 多尺度特征图的步幅。
        mask_head=dict(  # mask 预测 head 模型
            type='FCNMaskHead',  # mask head 的类型,更多细节请参考 https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/roi_heads/mask_heads/fcn_mask_head.py#L21。
            num_convs=4,  # mask head 中的卷积层数
            in_channels=256,  # 输入通道,应与 mask roi extractor 的输出通道一致。
            conv_out_channels=256,  # 卷积层的输出通道。
            num_classes=80,  # 要分割的类别数。
            loss_mask=dict(  # mask 分支的损失函数配置。
                type='CrossEntropyLoss',  # 用于分割的损失类型。
                use_mask=True,  # 是否只在正确的类中训练 mask。
                loss_weight=1.0))))  # mask 分支的损失权重.
    train_cfg = dict(  # rpn 和 rcnn 训练超参数的配置
        rpn=dict(  # rpn 的训练配置
            assigner=dict(  # 分配器(assigner)的配置
                type='MaxIoUAssigner',  # 分配器的类型,MaxIoUAssigner 用于许多常见的检测器,更多细节请参考 https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/bbox/assigners/max_iou_assigner.py#L10。
                pos_iou_thr=0.7,  # IoU >= 0.7(阈值) 被视为正样本。
                neg_iou_thr=0.3,  # IoU < 0.3(阈值) 被视为负样本。
                min_pos_iou=0.3,  # 将框作为正样本的最小 IoU 阈值。
                match_low_quality=True,  # 是否匹配低质量的框(更多细节见 API 文档).
                ignore_iof_thr=-1),  # 忽略 bbox 的 IoF 阈值。
            sampler=dict(  # 正/负采样器(sampler)的配置
                type='RandomSampler',  # 采样器类型,还支持 PseudoSampler 和其他采样器,更多细节请参考 https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/bbox/samplers/random_sampler.py#L8。
                num=256,  # 样本数量。
                pos_fraction=0.5,  # 正样本占总样本的比例。
                neg_pos_ub=-1,  # 基于正样本数量的负样本上限。
                add_gt_as_proposals=False),  # 采样后是否添加 GT 作为 proposal。
            allowed_border=-1,  # 填充有效锚点后允许的边框。
            pos_weight=-1,  # 训练期间正样本的权重。
            debug=False),  # 是否设置调试(debug)模式
        rpn_proposal=dict(  # 在训练期间生成 proposals 的配置
            nms_across_levels=False,  # 是否对跨层的 box 做 NMS。仅适用于 `GARPNHead` ,naive rpn 不支持 nms cross levels。
            nms_pre=2000,  # NMS 前的 box 数
            nms_post=1000,  # NMS 要保留的 box 的数量,只在 GARPNHHead 中起作用。
            max_per_img=1000,  # NMS 后要保留的 box 数量。
            nms=dict( # NMS 的配置
                type='nms',  # NMS 的类别
                iou_threshold=0.7 # NMS 的阈值
                ),
            min_bbox_size=0),  # 允许的最小 box 尺寸
        rcnn=dict(  # roi head 的配置。
            assigner=dict(  # 第二阶段分配器的配置,这与 rpn 中的不同
                type='MaxIoUAssigner',  # 分配器的类型,MaxIoUAssigner 目前用于所有 roi_heads。更多细节请参考 https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/bbox/assigners/max_iou_assigner.py#L10。
                pos_iou_thr=0.5,  # IoU >= 0.5(阈值)被认为是正样本。
                neg_iou_thr=0.5,  # IoU < 0.5(阈值)被认为是负样本。
                min_pos_iou=0.5,  # 将 box 作为正样本的最小 IoU 阈值
                match_low_quality=False,  # 是否匹配低质量下的 box(有关更多详细信息,请参阅 API 文档)。
                ignore_iof_thr=-1),  # 忽略 bbox 的 IoF 阈值
            sampler=dict(
                type='RandomSampler',  #采样器的类型,还支持 PseudoSampler 和其他采样器,更多细节请参考 https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/bbox/samplers/random_sampler.py#L8。
                num=512,  # 样本数量
                pos_fraction=0.25,  # 正样本占总样本的比例。.
                neg_pos_ub=-1,  # 基于正样本数量的负样本上限。.
                add_gt_as_proposals=True
            ),  # 采样后是否添加 GT 作为 proposal。
            mask_size=28,  # mask 的大小
            pos_weight=-1,  # 训练期间正样本的权重。
            debug=False))  # 是否设置调试模式。
    test_cfg = dict(  # 用于测试 rpn 和 rcnn 超参数的配置
        rpn=dict(  # 测试阶段生成 proposals 的配置
            nms_across_levels=False,  # 是否对跨层的 box 做 NMS。仅适用于`GARPNHead`,naive rpn 不支持做 NMS cross levels。
            nms_pre=1000,  # NMS 前的 box 数
            nms_post=1000,  # NMS 要保留的 box 的数量,只在`GARPNHHead`中起作用。
            max_per_img=1000,  # NMS 后要保留的 box 数量
            nms=dict( # NMS 的配置
                type='nms',  # NMS 的类型
                iou_threshold=0.7 # NMS 阈值
                ),
            min_bbox_size=0),  # box 允许的最小尺寸
        rcnn=dict(  # roi heads 的配置
            score_thr=0.05,  # bbox 的分数阈值
            nms=dict(  # 第二步的 NMS 配置
                type='nms',  # NMS 的类型
                iou_thr=0.5),  # NMS 的阈值
            max_per_img=100,  # 每张图像的最大检测次数
            mask_thr_binary=0.5))  # mask 预处的阈值
dataset_type = 'CocoDataset'  # 数据集类型,这将被用来定义数据集。
data_root = 'data/coco/'  # 数据的根路径。
img_norm_cfg = dict(  # 图像归一化配置,用来归一化输入的图像。
    mean=[123.675, 116.28, 103.53],  # 预训练里用于预训练主干网络模型的平均值。
    std=[58.395, 57.12, 57.375],  # 预训练里用于预训练主干网络模型的标准差。
    to_rgb=True
)  #  预训练里用于预训练主干网络的图像的通道顺序。
train_pipeline = [  # 训练流程
    dict(type='LoadImageFromFile'),  # 第 1 个流程,从文件路径里加载图像。
    dict(
        type='LoadAnnotations',  # 第 2 个流程,对于当前图像,加载它的注释信息。
        with_bbox=True,  # 是否使用标注框(bounding box), 目标检测需要设置为 True。
        with_mask=True,  # 是否使用 instance mask,实例分割需要设置为 True。
        poly2mask=False),  # 是否将 polygon mask 转化为 instance mask, 设置为 False 以加速和节省内存。
    dict(
        type='Resize',  # 变化图像和其注释大小的数据增广的流程。
        img_scale=(1333, 800),  # 图像的最大规模。
        keep_ratio=True
    ),  # 是否保持图像的长宽比。
    dict(
        type='RandomFlip',  #  翻转图像和其注释大小的数据增广的流程。
        flip_ratio=0.5),  # 翻转图像的概率。
    dict(
        type='Normalize',  # 归一化当前图像的数据增广的流程。
        mean=[123.675, 116.28, 103.53],  # 这些键与 img_norm_cfg 一致,因为 img_norm_cfg 被
        std=[58.395, 57.12, 57.375],     # 用作参数。
        to_rgb=True),
    dict(
        type='Pad',  # 填充当前图像到指定大小的数据增广的流程。
        size_divisor=32),  # 填充图像可以被当前值整除。
    dict(type='DefaultFormatBundle'),  # 流程里收集数据的默认格式捆。
    dict(
        type='Collect',  # 决定数据中哪些键应该传递给检测器的流程
        keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks'])
]
test_pipeline = [
    dict(type='LoadImageFromFile'),  # 第 1 个流程,从文件路径里加载图像。
    dict(
        type='MultiScaleFlipAug',  # 封装测试时数据增广(test time augmentations)。
        img_scale=(1333, 800),  # 决定测试时可改变图像的最大规模。用于改变图像大小的流程。
        flip=False,  # 测试时是否翻转图像。
        transforms=[
            dict(type='Resize',  # 使用改变图像大小的数据增广。
                 keep_ratio=True),  # 是否保持宽和高的比例,这里的图像比例设置将覆盖上面的图像规模大小的设置。
            dict(type='RandomFlip'),  # 考虑到 RandomFlip 已经被添加到流程里,当 flip=False 时它将不被使用。
            dict(
                type='Normalize',  #  归一化配置项,值来自 img_norm_cfg。
                mean=[123.675, 116.28, 103.53],
                std=[58.395, 57.12, 57.375],
                to_rgb=True),
            dict(
                type='Pad',  # 将配置传递给可被 32 整除的图像。
                size_divisor=32),
            dict(
                type='ImageToTensor',  # 将图像转为张量
                keys=['img']),
            dict(
                type='Collect',  # 收集测试时必须的键的收集流程。
                keys=['img'])
        ])
]
data = dict(
    samples_per_gpu=2,  # 单个 GPU 的 Batch size
    workers_per_gpu=2,  # 单个 GPU 分配的数据加载线程数
    train=dict(  # 训练数据集配置
        type='CocoDataset',  # 数据集的类别, 更多细节请参考 https://github.com/open-mmlab/mmdetection/blob/master/mmdet/datasets/coco.py#L19。
        ann_file='data/coco/annotations/instances_train2017.json',  # 注释文件路径
        img_prefix='data/coco/train2017/',  # 图片路径前缀
        pipeline=[  # 流程, 这是由之前创建的 train_pipeline 传递的。
            dict(type='LoadImageFromFile'),
            dict(
                type='LoadAnnotations',
                with_bbox=True,
                with_mask=True,
                poly2mask=False),
            dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
            dict(type='RandomFlip', flip_ratio=0.5),
            dict(
                type='Normalize',
                mean=[123.675, 116.28, 103.53],
                std=[58.395, 57.12, 57.375],
                to_rgb=True),
            dict(type='Pad', size_divisor=32),
            dict(type='DefaultFormatBundle'),
            dict(
                type='Collect',
                keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks'])
        ]),
    val=dict(  # 验证数据集的配置
        type='CocoDataset',
        ann_file='data/coco/annotations/instances_val2017.json',
        img_prefix='data/coco/val2017/',
        pipeline=[  # 由之前创建的 test_pipeline 传递的流程。
            dict(type='LoadImageFromFile'),
            dict(
                type='MultiScaleFlipAug',
                img_scale=(1333, 800),
                flip=False,
                transforms=[
                    dict(type='Resize', keep_ratio=True),
                    dict(type='RandomFlip'),
                    dict(
                        type='Normalize',
                        mean=[123.675, 116.28, 103.53],
                        std=[58.395, 57.12, 57.375],
                        to_rgb=True),
                    dict(type='Pad', size_divisor=32),
                    dict(type='ImageToTensor', keys=['img']),
                    dict(type='Collect', keys=['img'])
                ])
        ]),
    test=dict(  # 测试数据集配置,修改测试开发/测试(test-dev/test)提交的 ann_file
        type='CocoDataset',
        ann_file='data/coco/annotations/instances_val2017.json',
        img_prefix='data/coco/val2017/',
        pipeline=[  # 由之前创建的 test_pipeline 传递的流程。
            dict(type='LoadImageFromFile'),
            dict(
                type='MultiScaleFlipAug',
                img_scale=(1333, 800),
                flip=False,
                transforms=[
                    dict(type='Resize', keep_ratio=True),
                    dict(type='RandomFlip'),
                    dict(
                        type='Normalize',
                        mean=[123.675, 116.28, 103.53],
                        std=[58.395, 57.12, 57.375],
                        to_rgb=True),
                    dict(type='Pad', size_divisor=32),
                    dict(type='ImageToTensor', keys=['img']),
                    dict(type='Collect', keys=['img'])
                ])
        ],
        samples_per_gpu=2  # 单个 GPU 测试时的 Batch size
        ))
evaluation = dict(  # evaluation hook 的配置,更多细节请参考 https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/evaluation/eval_hooks.py#L7。
    interval=1,  # 验证的间隔。
    metric=['bbox', 'segm'])  # 验证期间使用的指标。
optimizer = dict(  # 用于构建优化器的配置文件。支持 PyTorch 中的所有优化器,同时它们的参数与 PyTorch 里的优化器参数一致。
    type='SGD',  # 优化器种类,更多细节可参考 https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/optimizer/default_constructor.py#L13。
    lr=0.02,  # 优化器的学习率,参数的使用细节请参照对应的 PyTorch 文档。
    momentum=0.9,  # 动量(Momentum)
    weight_decay=0.0001)  # SGD 的衰减权重(weight decay)。
optimizer_config = dict(  # optimizer hook 的配置文件,执行细节请参考 https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/optimizer.py#L8。
    grad_clip=None)  # 大多数方法不使用梯度限制(grad_clip)。
lr_config = dict(  # 学习率调整配置,用于注册 LrUpdater hook。
    policy='step',  # 调度流程(scheduler)的策略,也支持 CosineAnnealing, Cyclic, 等。请从 https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/lr_updater.py#L9 参考 LrUpdater 的细节。
    warmup='linear',  # 预热(warmup)策略,也支持 `exp` 和 `constant`。
    warmup_iters=500,  # 预热的迭代次数
    warmup_ratio=
    0.001,  # 用于热身的起始学习率的比率
    step=[8, 11])  # 衰减学习率的起止回合数
runner = dict(
    type='EpochBasedRunner',  # 将使用的 runner 的类别 (例如 IterBasedRunner 或 EpochBasedRunner)。
    max_epochs=12) # runner 总回合数, 对于 IterBasedRunner 使用 `max_iters`
checkpoint_config = dict(  # Checkpoint hook 的配置文件。执行时请参考 https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/checkpoint.py。
    interval=1)  # 保存的间隔是 1。
log_config = dict(  # register logger hook 的配置文件。
    interval=50,  # 打印日志的间隔
    hooks=[
        # dict(type='TensorboardLoggerHook')  # 同样支持 Tensorboard 日志
        dict(type='TextLoggerHook')
    ])  # 用于记录训练过程的记录器(logger)。
dist_params = dict(backend='nccl')  # 用于设置分布式训练的参数,端口也同样可被设置。
log_level = 'INFO'  # 日志的级别。
load_from = None  # 从一个给定路径里加载模型作为预训练模型,它并不会消耗训练时间。
resume_from = None  # 从给定路径里恢复检查点(checkpoints),训练模式将从检查点保存的轮次开始恢复训练。
workflow = [('train', 1)]  # runner 的工作流程,[('train', 1)] 表示只有一个工作流且工作流仅执行一次。根据 total_epochs 工作流训练 12个回合。
work_dir = 'work_dir'  # 用于保存当前实验的模型检查点和日志的目录。

自定义数据集

1.把数据集转为coco就完事了。

2.为自定义数据集修改配置文件:(涉及两个方面)

data 部分。需要在 data.traindata.val 和 data.test 中添加 classes

model 部分中的 num_classes。需要将默认值修改为自定义数据集中的类别数。


# 新的配置来自基础的配置以更好地说明需要修改的地方
_base_ = './cascade_mask_rcnn_r50_fpn_1x_coco.py'

# 1. 数据集设定
dataset_type = 'CocoDataset'
classes = ('a', 'b', 'c', 'd', 'e')
data = dict(
    samples_per_gpu=2,
    workers_per_gpu=2,
    train=dict(
        type=dataset_type,
        # 将类别名字添加至 `classes` 字段中
        classes=classes,
        ann_file='path/to/your/train/annotation_data',
        img_prefix='path/to/your/train/image_data'),
    val=dict(
        type=dataset_type,
        # 将类别名字添加至 `classes` 字段中
        classes=classes,
        ann_file='path/to/your/val/annotation_data',
        img_prefix='path/to/your/val/image_data'),
    test=dict(
        type=dataset_type,
        # 将类别名字添加至 `classes` 字段中
        classes=classes,
        ann_file='path/to/your/test/annotation_data',
        img_prefix='path/to/your/test/image_data'))

# 2. 模型设置

# 将所有的 `num_classes` 默认值修改为5(原来为80)
model = dict(
    roi_head=dict(
        bbox_head=[
            dict(
                type='Shared2FCBBoxHead',
                # 将所有的 `num_classes` 默认值修改为 5(原来为 80)
                num_classes=5),
            dict(
                type='Shared2FCBBoxHead',
                # 将所有的 `num_classes` 默认值修改为 5(原来为 80)
                num_classes=5),
            dict(
                type='Shared2FCBBoxHead',
                # 将所有的 `num_classes` 默认值修改为 5(原来为 80)
                num_classes=5)],
    # 将所有的 `num_classes` 默认值修改为 5(原来为 80)
    mask_head=dict(num_classes=5)))

自定义数据预处理流程

数据加载(data loading)、预处理(pre-processing)、格式变化(formatting)和测试时数据增强(test-time augmentation)

拓展和使用自定义的流程

1.在任意文件里写一个新的流程,例如在 my_pipeline.py,它以一个字典作为输入并且输出一个字典:

import random
from mmdet.datasets import PIPELINES


@PIPELINES.register_module()
class MyTransform:
    """Add your transform

    Args:
        p (float): Probability of shifts. Default 0.5.
    """

    def __init__(self, p=0.5):
        self.p = p

    def __call__(self, results):
        if random.random() > self.p:
            results['dummy'] = True
        return results

2.

在配置文件里调用并使用你写的数据处理流程,需要确保你的训练脚本能够正确导入新增模块:

custom_imports = dict(imports=['path.to.my_pipeline'], allow_failed_imports=False)

img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations', with_bbox=True),
    dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
    dict(type='RandomFlip', flip_ratio=0.5),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='Pad', size_divisor=32),
    dict(type='MyTransform', p=0.2),
    dict(type='DefaultFormatBundle'),
    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]

自定义模型

简单把模型的各个组件分为5类:backbone、neck、head、roi extractor、loss。

1.添加一个新的主干网络

1.新建一个文件mmdet/models/backbones/mobilenet.py

import torch.nn as nn

from ..builder import BACKBONES


@BACKBONES.register_module()
class MobileNet(nn.Module):

    def __init__(self, arg1, arg2):
        pass

    def forward(self, x):  # should return a tuple
        pass

2.导入该模块到:mmdet/models/backbones/__init__.py

from .mobilenet import MobileNet

或添加:——————>到配置文件中,以避免代码被修改。?

custom_imports = dict(
    imports=['mmdet.models.backbones.mobilenet'],
    allow_failed_imports=False)

3.在配置文件中使用该backbone。

model = dict(
    ...
    backbone=dict(
        type='MobileNet',
        arg1=xxx,
        arg2=xxx),
    ...

2.定义一个Neck

新建一个文件:mmdet/models/necks/pafpn.py

from ..builder import NECKS

@NECKS.register_module()
class PAFPN(nn.Module):

    def __init__(self,
                in_channels,
                out_channels,
                num_outs,
                start_level=0,
                end_level=-1,
                add_extra_convs=False):
        pass

    def forward(self, inputs):
        # implementation is ignored
        pass

2.导入该模块到:mmdet/models/necks/__init__.py

from .pafpn import PAFPN

或添加————————>到配置文件以免原始代码被修改。?

custom_imports = dict(
    imports=['mmdet.models.necks.pafpn.py'],
    allow_failed_imports=False)

3.修改配置文件:

neck=dict(
    type='PAFPN',
    in_channels=[256, 512, 1024, 2048],
    out_channels=256,
    num_outs=5)

换头和换loss是一样的。

自定义损失函数

损失的计算过程:

  1. 设置采样方法为对正负样本进行采样。

  2. 通过损失核函数获取元素或者样本损失。

  3. 通过权重张量来给损失逐元素权重。

  4. 把损失张量归纳为一个标量

  5. 用一个张量给当前损失一个权重。

1.设置采样方法

对于一些损失函数,需要采样策略来避免正负样本之间的不平衡。

例如,在RPN head中使用CrossEntropyLoss时,我们需要在train_cfg中设置RandomSampler

train_cfg=dict(
    rpn=dict(
        sampler=dict(
            type='RandomSampler',
            num=256,
            pos_fraction=0.5,
            neg_pos_ub=-1,
            add_gt_as_proposals=False))

对于其他一些具有正负样本平衡机制的损失,例如 Focal Loss、GHMC 和 QualityFocalLoss,不再需要进行采样。

其他的就没啥,在配置文件中微调就行了。

模型微调

继承基础配置:./configs

从_base_/models/mask_rcnn_r50_fpn.py中继承基本结构

要是用Cityscapes数据集,那也要继承_base_/datasets/cityscapes_instance.py

对于训练过程的运行设置部分:新配置需要从_base_/default_runtime.py中继承。

Head的修改

只需要对 roi_head 中的 num_classes进行修改。修改后除了最后的预测模型的 Head 之外,预训练模型的权重的大部分都会被重新使用。

model = dict(
    pretrained=None,
    roi_head=dict(
        bbox_head=dict(
            type='Shared2FCBBoxHead',
            in_channels=256,
            fc_out_channels=1024,
            roi_feat_size=7,
            num_classes=8,
            bbox_coder=dict(
                type='DeltaXYWHBBoxCoder',
                target_means=[0., 0., 0., 0.],
                target_stds=[0.1, 0.1, 0.2, 0.2]),
            reg_class_agnostic=False,
            loss_cls=dict(
                type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
            loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
        mask_head=dict(
            type='FCNMaskHead',
            num_convs=4,
            in_channels=256,
            conv_out_channels=256,
            num_classes=8,
            loss_mask=dict(
                type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))))

数据集修改

一般不用修改。

训练策略的修改

微调超参数与默认的训练策略不同。它通常需要更小的学习率和更少的训练回合。

# 优化器
# batch size 为 8 时的 lr 配置
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
# 学习策略
lr_config = dict(
    policy='step',
    warmup='linear',
    warmup_iters=500,
    warmup_ratio=0.001,
    step=[7])
# lr_config 中的 max_epochs 和 step 需要针对自定义数据集进行专门调整
runner = dict(max_epochs=8)
log_config = dict(interval=100)

使用预训练模型

load_from = 'https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco_bbox_mAP-0.408__segm_mAP-0.37_20200504_163245-42aa3d00.pth'  # noqa

权重初始化

暂时用不着

HOW TO XXX

1.使用MMClassfication的骨干网络,

使用在MMClassification中实现的骨干网络

MMDet、MMCls、MMSeg 中的模型注册表都继承自 MMCV 中的根注册表,允许这些存储库直接使用彼此已经实现的模块。 因此用户可以在 MMDetection 中使用来自 MMClassification 的骨干网络,而无需实现MMClassification 中已经存在的网络。

通过 MMClassification 在 TIMM 中使用骨干网络_base_ = [
    '../_base_/models/retinanet_r50_fpn.py',
    '../_base_/datasets/coco_detection.py',
    '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
# please install mmcls>=0.20.0
# import mmcls.models to trigger register_module in mmcls
custom_imports = dict(imports=['mmcls.models'], allow_failed_imports=False)
pretrained = 'https://download.openmmlab.com/mmclassification/v0/mobilenet_v3/convert/mobilenet_v3_small-8427ecf0.pth'
model = dict(
    backbone=dict(
        _delete_=True, # 将 _base_ 中关于 backbone 的字段删除
        type='mmcls.MobileNetV3', # 使用 mmcls 中的 MobileNetV3
        arch='small',
        out_indices=(3, 8, 11), # 修改 out_indices
        init_cfg=dict(
            type='Pretrained',
            checkpoint=pretrained,
            prefix='backbone.')), # MMCls 中骨干网络的预训练权重含义 prefix='backbone.',为了正常加载权重,需要把这个 prefix 去掉。
    # 修改 in_channels
    neck=dict(in_channels=[24, 48, 96], start_level=0))

通过 MMClassification 使用 TIMM 中实现的骨干网络

由于 MMClassification 提供了 PyTorch Image Models (timm) 骨干网络的封装,用户也可以通过 MMClassification 直接使用 timm 中的骨干网络。假设想将 EfficientNet-B1 作为 RetinaNet 的骨干网络,则配置文件如下。

# https://github.com/open-mmlab/mmdetection/blob/master/configs/timm_example/retinanet_timm_efficientnet_b1_fpn_1x_coco.py
_base_ = [
    '../_base_/models/retinanet_r50_fpn.py',
    '../_base_/datasets/coco_detection.py',
    '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]

# please install mmcls>=0.20.0
# import mmcls.models to trigger register_module in mmcls
custom_imports = dict(imports=['mmcls.models'], allow_failed_imports=False)
model = dict(
    backbone=dict(
        _delete_=True, # 将 _base_ 中关于 backbone 的字段删除
        type='mmcls.TIMMBackbone', # 使用 mmcls 中 timm 骨干网络
        model_name='efficientnet_b1',
        features_only=True,
        pretrained=True,
        out_indices=(1, 2, 3, 4)), # 修改 out_indices
    neck=dict(in_channels=[24, 40, 112, 320])) # 修改 in_channels

optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)

使用马赛克数据增强

如果你想在训练中使用 Mosaic,那么请确保你同时使用 MultiImageMixDataset。以 Faster R-CNN 算法为例,你可以通过如下做法实现:

# 直接打开 configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py ,增添如下字段
data_root = 'data/coco/'
dataset_type = 'CocoDataset'
img_scale=(1333, 800)​
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)

train_pipeline = [
    dict(type='Mosaic', img_scale=img_scale, pad_val=114.0),
    dict(
        type='RandomAffine',
        scaling_ratio_range=(0.1, 2),
        border=(-img_scale[0] // 2, -img_scale[1] // 2)), # 图像经过马赛克处理后会放大4倍,所以我们使用仿射变换来恢复图像的大小。
    dict(type='RandomFlip', flip_ratio=0.5),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='Pad', size_divisor=32),
    dict(type='DefaultFormatBundle'),
    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]

train_dataset = dict(
    _delete_ = True, # 删除不必要的设置
    type='MultiImageMixDataset',
    dataset=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_train2017.json',
        img_prefix=data_root + 'train2017/',
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(type='LoadAnnotations', with_bbox=True)
        ],
        filter_empty_gt=False,
    ),
    pipeline=train_pipeline
    )
​
data = dict(
    train=train_dataset
    )

你可能感兴趣的:(图像处理,计算机视觉,深度学习,目标检测)