在图像测量过程以及机器视觉应用中,为确定空间物体表面某点的三维几何位置与其在图像中对应点之间的相互关系,必须建立相机成像的几何模型,这些几何模型参数就是相机参数。在大多数条件下这些参数必须通过实验与计算才能得到,这个求解参数的过程就称之为相机标定(或摄像机标定)。
目的:求出相机的内、外参数,以及畸变参数。
作用: 标定相机后可以做两件事:1.是由于每个镜头的畸变程度各不相同,通过相机标定可以校正这种镜头畸变矫正畸变,生成矫正后的图像;2.是根据获得的图像重构三维场景。
畸变(distortion)是对直线投影(rectilinear projection)的一种偏移。简单来说直线投影是场景内的一条直线投影到图片上也保持为一条直线。畸变简单来说就是一条直线投影到图片上不能保持为一条直线了,这是一种光学畸变(optical aberration),可能由于摄像机镜头的原因。
畸变一般可以分为:径向畸变、切向畸变
1、径向畸变来自于透镜形状
2、切向畸变来自于整个摄像机的组装过程
畸变还有其他类型的畸变,但是没有径向畸变、切向畸变显著
1.传统相机标定法
优点:适用任意摄像机模型,标定精度高;
不足:需标定参照物,某些应用中难以实现;
传统相机标定法需要使用尺寸已知的标定物,通过建立标定物上坐标已知的点与其图像点之间的对应,利用一定的算法获得相机模型的内外参数。根据标定物的不同可分为三维标定物和平面型标定物。三维标定物可由单幅图像进行标定,标定精度较高,但高精密三维标定物的加工和维护较困难。平面型标定物比三维标定物制作简单,精度易保证,但标定时必须采用两幅或两幅以上的图像。传统相机标定法在标定过程中始终需要标定物,且标定物的制作精度会影响标定结果。同时有些场合不适合放置标定物也限制了传统相机标定法的应用。
2.主动视觉相机标定法
优点:算法简单,往往能够获得线性解,故鲁棒性较高;
缺点:系统的成本高、实验设备昂贵、实验条件要求高,而且不适合于运动参数位置或无法控制的场合。
基于主动视觉的相机标定法是指已知相机的某些运动信息对相机进行标定。该方法不需要标定物,但需要控制相机做某些特殊运动,利用这种运动的特殊性可以计算出相机内部参数。
3.相机自标定法
优点:自标定方法灵活性强,可对相机进行在线定标;
缺点:它是基于绝对二次曲线或曲面的方法,其算法鲁棒性差。
目前出现的自标定算法中主要是利用相机运动的约束。相机的运动约束条件太强,因此使得其在实际中并不实用。利用场景约束主要是利用场景中的一些平行或者正交的信息。其中空间平行线在相机图像平面上的交点被称为消失点,它是射影几何中一个非常重要的特征,所以很多学者研究了基于消失点的相机自标定方法。
1.打印一张棋盘方格图并贴在一个平面上
2.从不同角度拍摄若干张模板图像
3.检测出图像中的特征点
4.由检测到的特征点计算出每幅图像中的平面投影矩阵H
5.确定出摄像机的参数
相机标定指建立相机图像像素位置与场景点位置之间的关系,根据相机成像模型,由特征点在图像中坐标与世界坐标的对应关系,求解相机模型的参数。相机需要标定的模型参数包括内部参数和外部参数。
针孔相机成像原理其实就是利用投影将真实的三维世界坐标转换到二维的相机坐标上去,其模型示意图如下图所示:
从图中我们可以看出,在世界坐标中的一条直线上的点在相机上只呈现出了一个点,其中发生了非常大的变化,同时也损失和很多重要的信息,这正是我们3D重建、目标检测与识别领域的重点和难点。实际中,镜头并非理想的透视成像,带有不同程度的畸变。理论上镜头的畸变包括径向畸变和切向畸变,切向畸变影响较小,通常只考虑径向畸变。
其中,(U,V, W)为在世界坐标系下一 点的物理坐标,
(u,v)为该点对应的在像素坐标系下的像索坐标,Z 为尺度因子,
dX为一个单位的单位长度,dY就是单位宽度
内参是摄像机内部的参数,和外界无关;
相机内部参数/内方位元素:焦距(f)、像主点坐标、畸变参数(θ为像素点的倾斜角,
畸变因子为:[-(fcotθ/dX)]-描述dX和dY之间的关系)
外参是摄像机坐标系和世界坐标系的关系。
相机外部参数/外方位元素:旋转®、平移(T)
一般可假设模板落在世界坐标系的Z=0的平面上。设K为摄像机的内参数矩
阵,r是R的第i个向量,那么对模板平面上的每一个点,都有
在一幅图像中可以检测到多个特征点,这样由式(3.16),多个对应点的方程叠加起来可以看成Sh’ =0,通过求该方程的最小二乘解可得到h’,也就是sTs 最小特征值所对应的特征向量,进而得到H。
注意H与真正的单应性矩阵之间可能相差一个比例因子。
首先令hi表示H的每一列向量,于是有
在立体视觉系统中,双目摄像机与单摄像机标定的差别是,需要通过定标,
测量双摄像机之间的相对位置。用两个摄像机同时观察周围环境,在标定中,我们可以用单摄像机定标方法分别得到两个摄像机各自的内外参数,如果外参数分别用R1,t1,与R2,t2表示,
则R1,t1表示C1摄像机与世界坐标系之间的相对位置,
2R,t2表示C2摄像机与世界坐标系之间的相对位置。对任意一点P,如它在世界坐
标系、C1坐标系与C2坐标系下的非齐次坐标分别为x(w) ,x(c1),x(c2),则
# -*- codeing =utf-8 -*-
# @Time : 2021/5/18 9:32
# @Author : ArLin
# @File : demo1.py
# @Software: PyCharm
import cv2
import numpy as np
import glob
# 找棋盘格角点
# 阈值
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
#棋盘格模板规格
w = 14 #内角点个数,内角点是和其他格子连着的点
h = 9
# 世界坐标系中的棋盘格点,例如(0,0,0), (1,0,0), (2,0,0) ....,(8,5,0),去掉Z坐标,记为二维矩阵
objp = np.zeros((w*h,3), np.float32)
objp[:,:2] = np.mgrid[0:w,0:h].T.reshape(-1,2)
# 储存棋盘格角点的世界坐标和图像坐标对
objpoints = [] # 在世界坐标系中的三维点
imgpoints = [] # 在图像平面的二维点
images = glob.glob('./pc/*.jpg') # 标定所用图像
for fname in images:
img = cv2.imread(fname)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# 找到棋盘格角点
# 棋盘图像(8位灰度或彩色图像) 棋盘尺寸 存放角点的位置
ret, corners = cv2.findChessboardCorners(gray, (w,h),None)
# 如果找到足够点对,将其存储起来
if ret == True:
# 角点精确检测
# 输入图像 角点初始坐标 搜索窗口为2*winsize+1 死区 求角点的迭代终止条件
cv2.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria)
objpoints.append(objp)
imgpoints.append(corners)
# 将角点在图像上显示
cv2.drawChessboardCorners(img, (w,h), corners, ret)
cv2.imshow('findCorners',img)
cv2.waitKey(1000)
cv2.destroyAllWindows()
#标定、去畸变
# 输入:世界坐标系里的位置 像素坐标 图像的像素尺寸大小 3*3矩阵,相机内参数矩阵 畸变矩阵
# 输出:标定结果 相机的内参数矩阵 畸变系数 旋转矩阵 平移向量
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None)
# mtx:内参数矩阵
# dist:畸变系数
# rvecs:旋转向量 (外参数)
# tvecs :平移向量 (外参数)
print (("ret:"),ret)
print (("mtx:\n"),mtx) # 内参数矩阵
print (("dist:\n"),dist) # 畸变系数 distortion cofficients = (k_1,k_2,p_1,p_2,k_3)
print (("rvecs:\n"),rvecs) # 旋转向量 # 外参数
print (("tvecs:\n"),tvecs) # 平移向量 # 外参数
# 去畸变
img2 = cv2.imread('pc/009.jpg')
h,w = img2.shape[:2]
# 我们已经得到了相机内参和畸变系数,在将图像去畸变之前,
# 我们还可以使用cv.getOptimalNewCameraMatrix()优化内参数和畸变系数,
# 通过设定自由自由比例因子alpha。当alpha设为0的时候,
# 将会返回一个剪裁过的将去畸变后不想要的像素去掉的内参数和畸变系数;
# 当alpha设为1的时候,将会返回一个包含额外黑色像素点的内参数和畸变系数,并返回一个ROI用于将其剪裁掉
newcameramtx, roi=cv2.getOptimalNewCameraMatrix(mtx,dist,(w,h),0,(w,h)) # 自由比例参数
dst = cv2.undistort(img2, mtx, dist, None, newcameramtx)
# 根据前面ROI区域裁剪图片
x,y,w,h = roi
dst = dst[y:y+h, x:x+w]
cv2.imwrite('calibresult.jpg',dst)
# 反投影误差
# 通过反投影误差,我们可以来评估结果的好坏。越接近0,说明结果越理想。
# 通过之前计算的内参数矩阵、畸变系数、旋转矩阵和平移向量,使用cv2.projectPoints()计算三维点到二维图像的投影,
# 然后计算反投影得到的点与图像上检测到的点的误差,最后计算一个对于所有标定图像的平均误差,这个值就是反投影误差。
total_error = 0
for i in range(len(objpoints)):
imgpoints2, _ = cv2.projectPoints(objpoints[i], rvecs[i], tvecs[i], mtx, dist)
error = cv2.norm(imgpoints[i],imgpoints2, cv2.NORM_L2)/len(imgpoints2)
total_error += error
print (("total error: "), total_error/len(objpoints))