相信大家在使用 labelme 标注数据之后,都需要将 json文件 转换为对应的标签图,但是每次一张一张转换,费时又费力,特别是转换后还需要再将 标签图修改名字,然后再移动到特定的文件夹,就又增添了不少工作量,作者也是深受其累。作为一名开发人员,怎么可以让这点问题难住呢,自然是让程序自动处理,而我们应该是 在旁刷抖音才对 ️️️
此外,对于labelme 每次标注的时候,需要加载 图片文件地址,设置自动保存等等操作,作者已经在 labelme 如何硬核加载 labels.txt 中教大家如何一次性配置,后期只需要打开即可,无需再为配置而烦恼,也可将配置文件分发给小组成员,使其将更多精力放在 ‘标注’ 这一艰巨任务上!
对于刚入门的小白,可以直接将 下面的完整代码复制粘贴使用,
⚠️注意:在使用前需要修改两个地方
default
设置为自己的输出文件夹;json_path
设置为 labelme 保存 json的文件夹;其中 110 行代码是 防止 Mac电脑自动添加的 .DS_Store 文件,无需处理
运行代码,就会再输出文件夹下面新出现以下三个
在生成的 SegmentLabels 文件中,对每张图片含有的 label 也整理成 txt 文件备份下来了,如果没有需求的话,大家将其注释掉即可 90-92 行代码
draw_label_png.py
# !/usr/bin/env python
# -*- coding:utf-8 -*-
# @Time : 2022.04
# @Author : 绿色羽毛
# @Email : [email protected]
# @Blog : https://blog.csdn.net/ViatorSun
# @Paper :
# @arXiv :
# @version: "1.0"
# @Note :
import argparse
import base64
import json
import os
import os.path as osp
import imgviz
import PIL.Image
from labelme.logger import logger
from labelme import utils
def main(json_file):
logger.warning( "This script is aimed to demonstrate how to convert the "
"JSON file to a single image dataset." )
logger.warning( "It won't handle multiple JSON files to generate a "
"real-use dataset." )
parser = argparse.ArgumentParser()
# parser.add_argument("json_file")
parser.add_argument("-o", "--out", default='/Users/viatorsun/Desktop/Demo/Tomato/')
args = parser.parse_args()
# json_file = args.json_file
# json_file = '/Users/viatorsun/Desktop/Demo/Tomato/TomatoJSON/HIMG_20211108_144919_1.json'
if args.out is None:
out_dir = osp.basename(json_file).replace(".", "_")
out_dir = osp.join(osp.dirname(json_file), out_dir)
else:
out_dir = args.out
out_dir = osp.join(osp.dirname(json_file), out_dir)
if not osp.exists(out_dir):
os.mkdir(out_dir)
img_name = osp.basename(json_file)[:-5]
data = json.load(open(json_file))
imageData = data.get("imageData")
if not imageData:
imagePath = os.path.join(os.path.dirname(json_file), data["imagePath"])
with open(imagePath, "rb") as f:
imageData = f.read()
imageData = base64.b64encode(imageData).decode("utf-8")
img = utils.img_b64_to_arr(imageData)
label_name_to_value = {"_background_": 0}
for shape in sorted(data["shapes"], key=lambda x: x["label"]):
label_name = shape["label"]
if label_name in label_name_to_value:
label_value = label_name_to_value[label_name]
else:
label_value = len(label_name_to_value)
label_name_to_value[label_name] = label_value
lbl, _ = utils.shapes_to_label( img.shape, data["shapes"], label_name_to_value )
label_names = [None] * (max(label_name_to_value.values()) + 1)
for name, value in label_name_to_value.items():
label_names[value] = name
lbl_viz = imgviz.label2rgb( lbl, imgviz.asgray(img), label_names=label_names, loc="rb" )
# 原图保存
Images = osp.join(out_dir, 'PNGImages')
if not osp.exists(Images):
os.mkdir(Images)
PIL.Image.fromarray(img).save(osp.join(Images ,img_name + ".png"))
# 标签保存
Labels = osp.join(out_dir,'SegmentLabels')
if not osp.exists(Labels):
os.mkdir(Labels)
utils.lblsave(osp.join(Labels, img_name + ".png" ), lbl)
with open(osp.join(out_dir, 'SegmentLabels', img_name + ".txt"), "w") as f:
for lbl_name in label_names:
f.write(lbl_name + "\n")
# 合成图保存
Label_viz = osp.join(out_dir, "Label_viz")
if not osp.exists(Label_viz):
os.mkdir(Label_viz)
PIL.Image.fromarray(lbl_viz).save(osp.join(Label_viz, img_name + ".png"))
logger.info("Saved to: {}".format(out_dir))
if __name__ == "__main__":
json_path = '/Users/viatorsun/Desktop/Demo/Tomato/TomatoJSON'
for root , dirs , files in os.walk(json_path):
for file in files:
if file == '.DS_Store':
continue
json_path = os.path.join(root ,file)
print(json_path)
main(json_path)