CSV是一种以","为分隔符来存储表格数据(数字或文本)的纯文本格式。这是一种简单通用的文件格式。
pd.DataFrame.to_csv()
"""
参数:
1. path_or_buf : str or file handle, default None,文件路径或文件对象;
2. sep: str, defaults to ',',使用的分隔符;
3. na_rep : str, default '',丢失数据的表示;
4. float_format: str, default None,浮点数的格式字符串;
5. columns: sequence, optional, 保存的列;
6. header: bool or list of str, default True,是否将列标签写入文件,如果为list or str,则将用于替换列标签写入文件;
7. index : bool, default True,是否写入行索引;
8. index_label : str or sequence, or False, default None,索引列的标签;
9. mode : str,python写模式,默认 'w';
10. encoding : str, optional,默认,’utf-8‘;
"""
pd.read_csv()
"""
参数:
1. filepath_or_buffer: various,文件路径或文件对象;
2. sep: str, defaults to ',',分隔符,默认 ',';
3. header : int, list of int, default 'infer',选择第几行作为列名,默认为第一行;
4. names : array-like, optional,列名列表;
5. index_col: int, str, sequence of int / str, or False, default ``None``,使用给定的列作为行标签;
6. usecols : list-like or callable, optional,列名或序列列表,返回子表;
7. na_values: scalar, str, list-like, or dict, default None,将对应值识别位NaN;
8. na_filter: boolean, default True,是否识别缺失值为Na;
"""
例:
# 定义DataFrame对象
>>> df = df = pd.DataFrame({'A': ['foo', 'bar', 'foo', 'bar',
'foo', 'bar', 'foo', 'foo'],
'B': ['one', 'one', 'two', 'three',
'two', 'two', 'one', 'three'],
'C': np.random.randn(8),
'D': np.random.randn(8)})
>>> df
A B C D
0 foo one -1.437858 0.155025
1 bar one 1.150565 -0.614996
2 foo two 0.296236 0.538160
3 bar three -1.355619 1.229465
4 foo two -0.411405 -1.167204
5 bar two -0.178302 -0.451726
6 foo one 1.127362 -0.407458
7 foo three -1.608615 -1.025847
# 将df保存到csv文件中
>>> df.to_csv('test.csv', )
>>> with open('test.csv') as fp:
print(fp.read())
A,B,C,D
foo,one,-1.4378575583783093,0.15502459897313522
bar,one,1.1505651678375877,-0.6149963246704199
foo,two,0.2962358799876369,0.5381601328949968
bar,three,-1.3556193106958445,1.22946535082023
foo,two,-0.4114051795979103,-1.167204338223104
bar,two,-0.17830153868950416,-0.4517260094135266
foo,one,1.1273617862319971,-0.4074578794708698
foo,three,-1.6086147075218953,-1.025847234571291
# 读取csv文件
>>> pd.read_csv('test.csv')
A B C D
0 foo one -1.437858 0.155025
1 bar one 1.150565 -0.614996
2 foo two 0.296236 0.538160
3 bar three -1.355619 1.229465
4 foo two -0.411405 -1.167204
5 bar two -0.178302 -0.451726
6 foo one 1.127362 -0.407458
7 foo three -1.608615 -1.025847