- 具身智能的视觉-语言导航综述
24年2月来自曲阜师范、华东师大和哈工大的论文“Vision-LanguageNavigationwithEmbodiedIntelligence:ASurvey”。作为人工智能领域的长期愿景,具身智能的核心目标是提升智体与环境的感知、理解和交互能力。视觉-语言导航(VLN)作为实现具身智能的重要研究路径,致力于探索智体如何利用自然语言与人进行有效沟通,接收并理解指令,并最终依靠视觉信息实现精准导
- 2023-03-21 硬拉天花板
我是小胡胡123
在感叹人类对生命敬畏的同时,作为普通人我们需要安全健身。硬拉名人榜,你的硬拉多重,就来对号入座:硬拉35kg,刚来健身房拍照发朋友圈的软妹子硬拉50kg,糖果超甜、吃个桃桃、小鲜肉硬拉70-80kg,中国男性平均水平硬拉90kg,我要努力健身,我要成为一个猛男,要猛!硬拉100kg,我会和同事、同学、朋友说我是一个健身爱好者,我不吃蛋白粉。最近很火的PT华哥挑战是单手徒手硬拉100kg哑铃,这个对
- Day13,无论如何先瘦下来再说
习习木田
今日份掉秤0.3kg。早饭,黑咖加奶茶。又是懒的做早饭的一天。午饭,米豆炖肉加炒西葫芦。吃的挺饱。如果不严格算的话,这13天差不多掉了五斤,如果严格一点算起来也掉了三斤。离目标还有差距,需要付出更多的努力。我实在懒,最近也不想动弹。要想有好的效果,运动是必须加的,躺瘦这种好事,想想就行了。
- 什么是GPT-4T?
亿只小灿灿
人工智能GPT-4T
1.引言:GPT-4T概述GPT-4T是OpenAI开发的新一代多模态大型语言模型,在GPT-4的基础上增强了对表格数据、数学表达式和代码的处理能力。其核心创新在于Transformer架构的优化,使模型能够更高效地处理结构化数据与文本的融合任务。本文将深入探讨GPT-4T的技术原理、应用场景及代码实现。2.GPT-4T核心技术解析2.1多模态输入处理GPT-4T支持三种主要输入模态:自然语言文本
- 躺在床上玩手机会有哪些危害?
开心果吧
关注一下,你永远是主角!躺在床上玩手机,突然手一松,还好姐反应快,我赶紧一闪,手机静静地躺在枕头上,我静静地趴在地上……根据相关报道,成都市民王先生,每天下班后躺在床上玩3个小时的手机,上个月25日,脖子以下不能动弹,出现了高位截瘫。经医生诊断,王先生是脊髓型颈椎病导致的脊髓急性损伤,需要手术。正常人头部重约5kg,躺在床上玩手机,颈部肌肉要承受20kg以上的重量。长期保持这一习惯的话,会出现颈部
- 聚焦基础研究突破,北电数智联合复旦大学等团队提出“AI安全”DDPA方法入选ICML
CSDN资讯
人工智能安全数据要素大数据
近日,由北电数智首席科学家窦德景教授牵头,联合复旦大学和美国奥本大学等科研团队共同研发,提出一种DDPA(DynamicDelayedPoisoningAttack)新型对抗性攻击方法,为机器学习领域的安全研究提供新视角与工具,相关论文已被国际机器学习大会(ICML2025)收录。ICML由国际机器学习学会(IMLS)主办,聚焦深度学习、强化学习、自然语言处理等机器学习前沿方向,是机器学习与人工智
- ChatGPT如何实现文字分类?精选案例和最佳实践
山城程序员
ChatGPT是一种预训练语言模型,通常用于生成自然语言文本。但是,在将其应用于分类任务时,它也可以表现出色。本文将介绍如何使用ChatGPT实现文本分类,并提供实践步骤和示例代码。1.数据准备在进行文本分类之前,您需要选择一个合适的数据集并对其进行清理和预处理。确保您的数据集包含带有标签的文本数据。例如,您可能拥有一些产品评论,并且需要将它们分类为积极或消极。以下是一个示例代码,演示如何加载数据
- 猫头虎推荐|用 AI 控制硬件设备的 MCP 工具:MCP2MQTT开源项目
猫头虎
猫头虎AI探索之路人工智能开源AIGCgptagipromptAI编程
猫头虎推荐|用AI控制硬件设备的MCP工具:MCP2MQTT开源项目MCP2MQTT是一款将物联网设备接入AI大模型的框架,它通过ModelContextProtocol(MCP)与MQTT协议的桥接,使得AI能够用自然语言实时感知并控制物理硬件。无论是机器人舵机控制,还是智能家居调光调色,你都可以借助MCP2MQTT快速原型、轻松上手。用自然语言控制硬件设备AI实时响应设备状态并调整物理参数让设
- Q10900H6迷你电脑:集成双10G+四2.5G网口,支持多系统网络部署
QotomPC
电脑5G网络
QotomQ10900H6系列是一款小型、无风扇设计的多网口迷你电脑,适合需要多网口、高带宽和长时间稳定运行的网络环境使用。整机尺寸为196×122×47mm,重量约1.23kg,便于安装在桌面、弱电箱或小型机柜中。该系列支持多种英特尔低功耗处理器,包括AlderLake-N和TwinLake-N平台,处理器型号覆盖N100、i3-N305、N150和i3-N355,可根据使用需求选择不同性能等级
- 大模型——TRAE+Milvus MCP 自然语言就能搞定向量数据库
不二人生
大模型milvus数据库trae大模型
大模型——TRAE+MilvusMCP自然语言就能搞定向量数据库不久前,继Cursor和ClaudeDesktop在海外市场掀起智能编程浪潮后,字节跳动TRAE海外版也进入了付费模式。相较前两款海外产品,TRAE集成了代码补全、智能问答和Agent模式之外,还可以为中文开发者带来本土化的智能编程体验。恰逢其时,MilvusMCP服务器新增了SSE(Server-SentEvents)支持。相比传统
- 在NLP深层语义分析中,深度学习和机器学习的区别与联系
在自然语言处理(NLP)的深层语义分析任务中,深度学习与机器学习的区别和联系主要体现在以下方面:一、核心区别特征提取方式机器学习:依赖人工设计特征(如词频、句法规则、TF-IDF等),需要领域专家对文本进行结构化处理。例如,传统情感分析需人工定义“情感词库”或通过词性标注提取关键成分。深度学习:通过神经网络自动学习多层次特征。例如,BERT等模型可从原始文本中捕获词向量、句法关系甚至篇章级语义,无
- 日精进16(2021-01-31)
冯彪1994
短期目标:早睡早起:每日晚上9点躺床上,早上5点起床减肥:从89公斤减肥至75公斤学习:每日吃12个番茄时钟今日评估:1.早睡早起:昨日凌晨3:00睡觉的,早上8点起来吃饭后,又睡了一上午。2.减肥:今日空腹体重87.2KG。今天去公园走了2圈,没做卷腹和平板支撑。3.学习:今天用了一个番茄时钟写日精进。只有减肥比较有成效,早睡早起和学习还是需要继续加强的。
- 敏捷开发中的自然语言处理集成
项目管理实战手册
项目管理最佳实践敏捷流程自然语言处理easyuiai
敏捷开发中的自然语言处理集成:让代码与需求“说人话”关键词:敏捷开发、自然语言处理(NLP)、用户故事分析、需求自动化、持续集成优化摘要:在敏捷开发中,“快速响应变化”的核心目标常被繁琐的文本处理拖慢——需求文档像“天书”、用户故事靠“脑补”、缺陷报告整理耗时……自然语言处理(NLP)就像一位“智能翻译官”,能让开发团队与需求文档“流畅对话”。本文将用“搭积木”“翻译机”等生活化比喻,带您理解如何
- 电科金仓AI数据库一体机发布:30%性能提升+自然语言运维,重塑数据底座!
Loving_enjoy
计算机学科论文创新点人工智能深度学习迁移学习经验分享
>百万级并发处理与聊天式数据库运维,正在中国企业机房掀起静默革命。“替换数据库是一件非常困难的事。”电科金仓总裁杜胜在7月15日北京发布会现场坦言。过去20多年里,国外数据库建立的标准让应用软件与数据库深度耦合,迁移复杂度高、改造成本大、停机风险难控。随着他身后大屏幕亮起**“数据库平替用金仓”**的全新口号,电科金仓正式向这一行业痛点宣战。这场名为“融合进化智领未来”的发布会,最耀眼的明星是**
- 使用Python调用Hugging Face Question Answering (问答)模型
墨如夜色
pythoneasyui开发语言Python
使用Python调用HuggingFaceQuestionAnswering(问答)模型在自然语言处理领域,问答系统是一种能够回答用户提出的问题的智能系统。HuggingFace是一个知名的开源软件库,提供了许多强大的自然语言处理工具和模型。其中,HuggingFace的QuestionAnswering模型可以帮助我们构建问答系统,使得我们能够从给定的文本中提取答案。本文将介绍如何使用Pytho
- AI人工智能领域知识图谱在文本分类中的应用技巧
AI天才研究院
AI大模型企业级应用开发实战人工智能知识图谱分类ai
AI人工智能领域知识图谱在文本分类中的应用技巧关键词:知识图谱、文本分类、图神经网络、实体关系抽取、深度学习、自然语言处理、特征融合摘要:本文深入探讨了知识图谱在文本分类任务中的应用技巧。我们将从知识图谱的基本概念出发,详细分析如何将结构化知识融入传统文本分类流程,介绍最新的图神经网络方法,并通过实际案例展示知识增强型文本分类系统的构建过程。文章特别关注知识表示学习与文本特征的融合策略,以及在不同
- Pad Token技术原理与实现指南
Takoony
AI
目录概述理论基础:第一性原理分析技术实现机制工程最佳实践性能优化策略常见问题与解决方案技术发展趋势附录1.概述1.1文档目的本文档旨在深入阐述深度学习中PadToken的技术原理、实现机制及工程应用,为算法工程师提供全面的理论指导和实践参考。1.2适用范围自然语言处理模型开发序列数据批处理优化深度学习系统架构设计高性能计算资源管理1.3核心问题研究问题:为什么深度学习模型需要将变长序列统一到固定长
- 多语言文本分类在AI应用中的实践
AI原生应用开发
人工智能分类数据挖掘ai
多语言文本分类在AI应用中的实践关键词:多语言文本分类、自然语言处理、机器学习、深度学习、BERT、迁移学习、跨语言模型摘要:本文深入探讨多语言文本分类在AI领域的应用实践。我们将从基础概念出发,逐步讲解其核心原理、技术架构和实现方法,并通过实际案例展示如何构建一个高效的多语言文本分类系统。文章将涵盖从传统机器学习方法到最先进的深度学习技术,特别关注跨语言迁移学习在实际业务场景中的应用。背景介绍目
- PyTorch生成式人工智能(18)——循环神经网络详解与实现
盼小辉丶
pytorchrnn自然语言处理
PyTorch生成式人工智能(18)——循环神经网络详解与实现0.前言1.文本生成的挑战2.循环神经网络2.1文本数据2.2循环神经网络原理3.长短期记忆网络3.自然语言处理基础3.1分词3.2词嵌入3.3词嵌入在自然语言处理中的应用小结系列链接0.前言我们已经学习了如何生成数字和图像等内容。从本节开始,我们将主要聚焦于文本生成。人类语言极其复杂且充满细微差别,不仅仅涉及语法和词汇的理解,还包括上
- ChatTongyi × LangChain:开启多模态AI应用创新之门
阿里云通义实验室推出的ChatTongyi(基于通义千问大模型)与LangChain框架的深度集成,为开发者打造了一套高效、灵活、全面的AI开发工具链。无论是文本对话、复杂任务自动化,还是图像理解,这一组合都为多场景智能应用的落地提供了坚实的基础。以下内容将从技术亮点到行业价值,带您系统梳理其核心能力与创新应用场景。1.极速上手:自然语言对话与流式输出核心能力:多轮对话理解:凭借强大的语言建模能力
- 大语言模型应用指南:网页实时浏览
AGI大模型与大数据研究院
AI大模型应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型应用指南:网页实时浏览作者:禅与计算机程序设计艺术1.背景介绍1.1大语言模型的崛起1.1.1自然语言处理的发展历程1.1.2Transformer模型的突破1.1.3预训练语言模型的优势1.2网页浏览的痛点1.2.1信息过载与检索困难1.2.2内容理解与知识提取1.2.3个性化与智能化需求1.3大语言模型与网页浏览的结合1.3.1智能问答与对话系统1.3.2知识图谱与语义搜索1.3.3
- AI驱动型论文搜索工具
司南锤
AI工具
✅一、AI驱动型论文搜索工具(强烈推荐)1.Consensus官网:consensus.app特点:输入自然语言问题(如“Doesgreenspacereduceurbanheatislandeffect?”),系统会自动返回论文中直接回答该问题的句子,标明支持/不支持的证据。适合人群:科研人员、政策制定者、想快速得到文献共识的人。2.ScispaceCopilot(原SemanticSchola
- Python深度学习实践:LSTM与GRU在序列数据预测中的应用
AI智能应用
Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python深度学习实践:LSTM与GRU在序列数据预测中的应用作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来序列数据预测是机器学习领域的一个重要研究方向,涉及时间序列分析、自然语言处理、语音识别等多个领域。序列数据具有时间依赖性,即序列中每个元素都受到前面元素的影响。传统的机器学习算法难以捕捉这种时间依赖性,而深度学习
- AI 大模型重塑软件开发流程
万花丛中一抹绿
人工智能
一、AI大模型的定义与发展历史AI大模型是基于海量数据训练的深度学习模型,具备强大的自然语言理解、逻辑推理和知识生成能力。在软件开发领域,以GPT-4、CodeLlama、GitHubCopilotX为代表的大模型,能理解代码语法、语义及业务逻辑,实现代码生成、漏洞检测等复杂任务。其发展可追溯至2017年,谷歌提出Transformer架构,为大模型奠定了核心基础。2018年,GPT-1问世,参数
- 进阶向:基于Python的智能客服系统设计与实现
智能客服系统开发指南系统概述智能客服系统是人工智能领域的重要应用,它通过自然语言处理(NLP)和机器学习技术自动化处理用户查询,显著提升客户服务效率和响应速度。基于Python的实现方案因其丰富的生态系统(如NLTK、spaCy、Transformers等库)、跨平台兼容性以及易于集成的特点,成为开发智能客服系统的首选。系统架构系统核心包括两个主要功能模块:1.API集成模块负责连接各类外部服务,
- 计算机视觉产品推荐,个性化推荐:人工智能中的计算机视觉、NLP自然语言处理和个性化推荐系统哪个前景更好一些?...
这个问题直接回答的话可能还是有着很强的个人观点,所以不如先向你介绍一些这几个领域目前的研究现状和应用情况(不再具体介绍其中原理)你自己可以斟酌一下哪方面更适合自己个性化推荐。一.所谓计算机视觉,是指使用计算机及相关设备对生物视觉的一种模拟个性化推荐。它的主要任务就是通过对采集的图片或视频进行处理以获得相应场景的三维信息,就像人类和许多其他类生物每天所做的那样[1]。现在人工智能的计算机视觉主要研究
- 2020-02-27 带女儿减肥第二天
伍洱壹
女儿出生于2012年。现读小学一年级。我和她妈都不是很高,现在女儿身高135cm,身高其实在同龄人身高还算偏高的。但是体重却有42.1kg了。我的天~~~肚子比我的啤酒肚还要大,在这次疫情宅在家里更是多吃少动,和老婆商量后,要带她减肥了。正式开始是昨天。下午出门放风的时候,跳绳,跳了5组,每组100下。也把她累够戗,晚上回来在keep中也练了两组训练,一组减脂入门,一组腹肌入门。我自己跳绳1000
- 76th time
MissHungry
臀腿练习,椭圆机25分钟。1.史密斯机深蹲,50磅杠铃片,20reps/set,4sets。负重深蹲,做到后半程,总是能感受到生命不能承受之重,气一顶起来的一瞬间世界都亮了。2.徒手深蹲,50reps/set,4sets。没有负重的深蹲简直就是在休息,完全无压力,几乎每一个都做到大腿与地面平行。3.25KG哑铃硬拉,20reps/set,4sets。4.箭步蹲,7.5KG哑铃,20reps/set
- Rust+ChatBoxAI:实战
ChatboxAIChatboxAI是一款基于人工智能技术的智能助手工具,旨在通过自然语言交互帮助用户完成多种任务。以下是其核心功能与特点:功能概述多模型支持:可连接OpenAI、Claude、Gemini等主流大语言模型,用户能自由切换不同AI服务。本地运行:支持离线使用,数据隐私性较强,适合敏感信息处理场景。跨平台兼容:提供Windows、macOS和Linux客户端,同步支持移动端应用。核心
- DeepSeekMath:突破开源语言模型在数学推理中的极限
AI专题精讲
强化学习人工智能强化学习AI技术应用
温馨提示:本篇文章已同步至"AI专题精讲"DeepSeekMath:突破开源语言模型在数学推理中的极限摘要数学推理由于其复杂且结构化的特性,对语言模型构成了重大挑战。本文介绍了DeepSeekMath7B,该模型在DeepSeek-Coder-Base-v1.57B的基础上继续进行了预训练,使用了来自CommonCrawl的120B数学相关token,同时包含自然语言和代码数据。DeepSeekM
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc