本文主要介绍python读写数据文件的6种常用方式。
with open(r'test.xlsx') as f:
a = f.read()
一般,在应用上述上下文管理器后,可以用如下三种方式进行内置方法的读写操作。
python内置了csv模块用于读写csv文件。
import csv
with open('test.csv','r') as myFile:
lines=csv.reader(myFile)
for line in lines:
print (line)
import csv
with open('test.csv','w+') as myFile:
myWriter=csv.writer(myFile)
# writerrow一行一行写入
myWriter.writerow([7,8,9])
myWriter.writerow([8,'h','f'])
# writerow多行写入
myList=[[1,2,3],[4,5,6]]
myWriter.writerows(myList)
loadtxt用来读取文本文件(包含txt、csv等)以及.gz 或.bz2格式压缩文件,前提是文件数据每一行必须要有数量相同的值。
import numpy as np
# loadtxt()中的dtype参数默认设置为float
# 这里设置为str字符串便于显示
np.loadtxt('test.csv',dtype=str)
# out:array(['1,2,3', '4,5,6', '7,8,9'], dtype='
load用来读取numpy专用的.npy, .npz 或者pickled持久化文件。
import numpy as np
# 先生成npy文件
np.save('test.npy', np.array([[1, 2, 3], [4, 5, 6]]))
# 使用load加载npy文件
np.load('test.npy')
'''
out:array([[1, 2, 3],
[4, 5, 6]])
'''
fromfile方法可以读取简单的文本数据或二进制数据,数据来源于tofile方法保存的二进制数据。读取数据时需要用户指定元素类型,并对数组的形状进行适当的修改。
import numpy as np
x = np.arange(9).reshape(3,3)
x.tofile('test.bin')
np.fromfile('test.bin',dtype=np.int)
# out:array([0, 1, 2, 3, 4, 5, 6, 7, 8])
read_csv
、read_excel
等)pandas是数据处理最常用的分析库之一,可以读取各种各样格式的数据文件,一般输出dataframe格式。
如:txt、csv、excel、json、剪切板、数据库、html、hdf、parquet、pickled文件、sas、stata等等
read_csv
方法read_csv
方法用来读取csv格式文件,输出dataframe格式。
import pandas as pd
pd.read_csv('test.csv')
read_excel
方法读取excel文件,包括xlsx、xls、xlsm格式
import pandas as pd
pd.read_excel('test.xlsx')
read_table
方法
通过对sep参数(分隔符)的控制来对任何文本文件读取
read_json
方法读取json格式文件
df = pd.DataFrame([['a', 'b'], ['c', 'd']],index=['row 1', 'row 2'],columns=['col 1', 'col 2'])
j = df.to_json(orient='split')
pd.read_json(j,orient='split')
read_html
方法读取html表格
read_clipboard
方法读取剪切板内容
read_pickle
方法读取plckled持久化文件
read_sql
方法读取数据库数据,连接好数据库后,传入sql语句即可
read_dhf
方法读取hdf5文件,适合大文件读取
read_parquet
方法读取parquet文件
read_sas
方法读取sas文件
read_stata
方法读取stata文件
read_gbq
方法读取google bigquery数据
python用于读写excel文件的库有很多,除了前面提到的pandas,还有xlrd、xlwt、openpyxl、xlwings等等。
主要模块:
python几乎支持对所有数据库的交互,连接数据库后,可以使用sql语句进行增删改查。
主要模块: