CIFAR-10 分类

import torch as t
import torchvision as tv
import torchvision.transforms as transforms
from torchvision.transforms import ToPILImage
show = ToPILImage()  # 可以把Tensor转成Image,方便可视化

# 第一次运行程序torchvision会自动下载CIFAR-10数据集
# 大约100MB,需花费一定的时间
# 如果已经下载有CIFAR-10,可通过root参数指定

# 定义对数据的预处理
transform = transforms.Compose([
    transforms.ToTensor(),  # 转为Tensor
    transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5)),   # 归一化
])

# 训练集
trainset = tv.datasets.CIFAR10(root = '/home/cy/data/',
                              train = True,
                              download = True,
                              transform = transform)

trainloader = t.utils.data.DataLoader(trainset,
                                      batch_size = 4,
                                     shuffle = True)

# 测试集
testset = tv.datasets.CIFAR10('/home/cy/data/',
                             train = False,
                             download = True,
                             transform = transform)

testloader = t.utils.data.DataLoader(testset,
                                    batch_size = 4,
                                    shuffle = False)

classes = ('plane','car','bird','cat','deer','dog','frog','horse','ship','truck')
Files already downloaded and verified
Files already downloaded and verified
(data,label) = trainset[100]
print(classes[label])

# (data + 1)/2 是为了还原被归一化的数据
show((data+1)/2).resize((100,100))
ship

在这里插入图片描述

dataiter = iter(trainloader)
images,labels = dataiter.next()  # 返回4张图片及标签
print(' '.join('%11s'%classes[labels[j]] for j in range(4)))
show(tv.utils.make_grid((images+1)/2)).resize((400,100))
        car       plane       truck         dog

在这里插入图片描述

import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):
    def __init__(self):
        super(Net,self).__init__()
        self.conv1 = nn.Conv2d(3,6,5)
        self.conv2 = nn.Conv2d(6,16,5)
        self.fc1 = nn.Linear(16*5*5,120)
        self.fc2 = nn.Linear(120,84)
        self.fc3 = nn.Linear(84,10)
        
    def forward(self,x):
        x = F.max_pool2d(F.relu(self.conv1(x)),(2,2))
        x = F.max_pool2d(F.relu(self.conv2(x)),2)
        x = x.view(x.size()[0],-1)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
    
net = Net()
print(net)
Net(
  (conv1): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))
  (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
  (fc1): Linear(in_features=400, out_features=120, bias=True)
  (fc2): Linear(in_features=120, out_features=84, bias=True)
  (fc3): Linear(in_features=84, out_features=10, bias=True)
)
from torch import optim
criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
optimizer = optim.SGD(net.parameters(),lr=0.001,momentum=0.9)
from torch.autograd import Variable
for epoch in range(2):
    running_loss = 0.0
    for i,data in enumerate(trainloader,0):
        # 输入数据
        inputs,labels = data
        inputs,labels = Variable(inputs),Variable(labels)
        
        # 梯度清零
        optimizer.zero_grad()
        
        # forward + backward
        outputs = net(inputs)
        loss = criterion(outputs,labels)
        loss.backward()
        
        # 更新参数
        optimizer.step()
        
        # 打印log信息
        running_loss += loss.item()
        if i % 2000 == 1999:    # 每2000个batch打印一次训练状态
            print('[%d,%5d] loss: %.3f' % (epoch+1,i+1,running_loss/2000))
            running_loss = 0.0
            
print('Finished Training')
[1, 2000] loss: 2.233
[1, 4000] loss: 1.905
[1, 6000] loss: 1.692
[1, 8000] loss: 1.621
[1,10000] loss: 1.523
[1,12000] loss: 1.482
[2, 2000] loss: 1.449
[2, 4000] loss: 1.387
[2, 6000] loss: 1.366
[2, 8000] loss: 1.341
[2,10000] loss: 1.326
[2,12000] loss: 1.284
Finished Training
dataiter = iter(testloader)
images,labels = dataiter.next()  # 一个batch返回4张图片
print('实际的label: ',' '.join('%08s'%classes[labels[j]] for j in range(4)))
show(tv.utils.make_grid(images/2-0.5)).resize((400,100))
实际的label:       cat     ship     ship    plane

在这里插入图片描述

# 计算图片在每个类别上的分数
outputs = net(Variable(images))
# 得分最高的那个类
_,predicted = t.max(outputs.data,1)
print('预测结果: ',' '.join('%5s'%classes[predicted[j]] for j in range(4)))
预测结果:    cat  ship  ship  ship
correct = 0   # 预测正确的图片数
total = 0     # 总共的图片数
for data in testloader:
    images,labels = data
    outputs = net(Variable(images))
    _,predicted = t.max(outputs.data,1)
    total += labels.size(0)
    correct += (predicted == labels).sum()
    
print('10000张测试集中的准确率为: %d %%' % (100*correct//total))
10000张测试集中的准确率为: 53 %
# 若有GPU,可将模型切换至GPU上训练
if t.cuda.is_available():
    net.cuda()
    images = images.cuda()
    labels = labels.cuda()
    output = net(Variable(images))
    loss = criterion(output,Variable(labels))

你可能感兴趣的:(深度学习,神经网络,pytorch)