apollo_目标跟踪

HM对象跟踪

from https://github.com/YannZyl/Apollo-Note

HM对象跟踪器跟踪 检测到的障碍物。通常,它通过将当前检测与现有跟踪列表相关联,来形成和更新跟踪列表,如不再存在,则删除旧的跟踪列表,并在识别出新的检测时生成新的跟踪列表。 更新后的跟踪列表的运动状态将在关联后进行估计。 在HM对象跟踪器中,匈牙利算法(Hungarian algorithm)用于检测到跟踪关联,并采用鲁棒卡尔曼滤波器(Robust Kalman Filter) 进行运动估计。

上述是Apollo官方文档对HM对象跟踪的描述,这部分意思比较明了,主要的跟踪流程可以分为:

  • 预处理。(lidar->local ENU坐标系变换、跟踪对象创建、跟踪目标保存)
  • 卡尔曼滤波器滤波,预测物体当前位置与速度(卡尔曼滤波阶段1:Predict阶段)
  • 匈牙利算法比配,关联检测物体和跟踪物体
  • 卡尔曼滤波,更新跟踪物体位置与速度信息(卡尔曼滤波阶段2:Update阶段)

进入HM物体跟踪的入口依旧在LidarProcessSubnode::OnPointCloud中:

/// file in apollo/modules/perception/obstacle/onboard/lidar_process_subnode.cc
void LidarProcessSubnode::OnPointCloud(const sensor_msgs::PointCloud2& message) {
  /// call hdmap to get ROI
  ...
  /// call roi_filter
  ...
  /// call segmentor
  ...
  /// call object builder
  ...
  /// call tracker
  if (tracker_ != nullptr) {
    TrackerOptions tracker_options;
    tracker_options.velodyne_trans = velodyne_trans;
    tracker_options.hdmap = hdmap;
    tracker_options.hdmap_input = hdmap_input_;
    if (!tracker_->Track(objects, timestamp_, tracker_options, &(out_sensor_objects->objects))) {
    ...
    }
  }
}

在这部分,总共有三个比较绕的对象类,分别是Object、TrackedObject和ObjectTrack,在这里统一说明一下区别:

  • Object类:常见的物体类,里面包含物体原始点云、多边形轮廓、物体类别、物体分类置信度、方向、长宽、速度等信息。全模块通用
  • TrackedObject类:封装Object类,记录了跟踪物体类属性,额外包含了中心、重心、速度、加速度、方向等信息。
  • ObjectTrack类:封装了TrackedObject类,实际的跟踪解决方案,不仅包含了需要跟踪的物体(TrackedObject),同时包含了跟踪物体滤波、预测运动趋势等函数。

所以可以看到,跟踪过程需要将原始Object封装成TrackedObject,创立跟踪对象;最后跟踪对象创立跟踪过程ObjectTrack,可以通过ObjectTrack里面的函数来对ObjectTrack所标记的TrackedObject进行跟踪。

/* /base/object.h  */
// 只列出了属性,完整实现见源码
struct alignas(16) Object {
  // object id per frame
  int id = 0;
  // point cloud of the object
  pcl_util::PointCloudPtr cloud;
  // convex hull of the object
  PolygonDType polygon;

  // oriented boundingbox information
  // main direction
  Eigen::Vector3d direction = Eigen::Vector3d(1, 0, 0);
  // the yaw angle, theta = 0.0 <=> direction = (1, 0, 0)
  double theta = 0.0;
  // ground center of the object (cx, cy, z_min)
  Eigen::Vector3d center = Eigen::Vector3d::Zero();
  // size of the oriented bbox, length is the size in the main direction
  double length = 0.0;
  double width = 0.0;
  double height = 0.0;
  // shape feature used for tracking
  std::vector<float> shape_features;

  // foreground score/probability
  float score = 0.0;
  // foreground score/probability type
  ScoreType score_type = ScoreType::SCORE_CNN;

  // Object classification type.
  ObjectType type = ObjectType::UNKNOWN;
  // Probability of each type, used for track type.
  std::vector<float> type_probs;

  // fg/bg flag
  bool is_background = false;

  // tracking information
  int track_id = 0;
  Eigen::Vector3d velocity = Eigen::Vector3d::Zero();
  // age of the tracked object
  double tracking_time = 0.0;
  double latest_tracked_time = 0.0;
  double timestamp = 0.0;

  // stable anchor_point during time, e.g., barycenter
  Eigen::Vector3d anchor_point;

  // noise covariance matrix for uncertainty of position and velocity
  Eigen::Matrix3d position_uncertainty;
  Eigen::Matrix3d velocity_uncertainty;

  // modeling uncertainty from sensor level tracker
  Eigen::Matrix4d state_uncertainty = Eigen::Matrix4d::Identity();
  // Tailgating (trajectory of objects)
  std::vector<Eigen::Vector3d> drops;
  // CIPV
  bool b_cipv = false;
  // local lidar track id
  int local_lidar_track_id = -1;
  // local radar track id
  int local_radar_track_id = -1;
  // local camera track id
  int local_camera_track_id = -1;

  // local lidar track ts
  double local_lidar_track_ts = -1;
  // local radar track ts
  double local_radar_track_ts = -1;
  // local camera track ts
  double local_camera_track_ts = -1;

  // sensor particular suplplements, default nullptr
  RadarSupplementPtr radar_supplement = nullptr;
  CameraSupplementPtr camera_supplement = nullptr;
};
/* /lidar/tracker/tarcked_object.h  */
// 只列出了属性,完整实现见源码
struct TrackedObject {
  /* NEED TO NOTICE: All the states of track would be collected mainly based on
   * the states of tracked object. Thus, update tracked object's state when you
   * update the state of track !!! */
  // cloud
  // store transformed object before tracking
  std::shared_ptr<Object> object_ptr;

  // 质心
  Eigen::Vector3f barycenter;

  // bbox
  Eigen::Vector3f center;
  Eigen::Vector3f size;
  Eigen::Vector3f direction;
  Eigen::Vector3f lane_direction;

  // states
  Eigen::Vector3f anchor_point;
  Eigen::Vector3f velocity;
  Eigen::Matrix3f velocity_uncertainty;
  Eigen::Vector3f acceleration;

  // class type
  ObjectType type;

  // association distance
  // range from 0 to association_score_maximum
  float association_score = 0.0f;
};  // struct TrackedObject
/* apollo/modules/perception/obstacle/lidar/tracker/hm_tracker/object_track.h  
   只列出了属性,完整实现见源码
*/
class ObjectTrack {
 public:
  explicit ObjectTrack(std::shared_ptr<TrackedObject> obj);
  ~ObjectTrack();

  // @brief set track cached history size maximum
  // @params[IN] track_cached_history_size_maximum: track cached history size
  // maximum
  // @return true if set successfully, otherwise return false
  static bool SetTrackCachedHistorySizeMaximum(
      const int track_cached_history_size_maximum);

  // @brief set acceleration noise maximum
  // @params[IN] acceleration_noise_maximum: acceleration noise maximum
  // @return true if set successfully, otherwise return false
  static bool SetAccelerationNoiseMaximum(
      const double acceleration_noise_maximum);

  // @brief set speed noise maximum
  // @params[IN] speed noise maximum: speed noise maximum
  // @return true if set successfully, otherwise return false
  static bool SetSpeedNoiseMaximum(const double speed_noise_maximum);

  // @brief get next avaiable track id
  // @return next avaiable track id
  static int GetNextTrackId();

  // @brief predict the state of track
  // @params[IN] time_diff: time interval for predicting
  // @return predicted states of track
  Eigen::VectorXf Predict(const double time_diff);

  // @brief update track with object
  // @params[IN] new_object: recent detected object for current updating
  // @params[IN] time_diff: time interval from last updating
  // @return nothing
  void UpdateWithObject(std::shared_ptr<TrackedObject>* new_object,
                        const double time_diff);

  // @brief update track without object
  // @params[IN] time_diff: time interval from last updating
  // @return nothing
  void UpdateWithoutObject(const double time_diff);

  // @brief update track without object with given predicted state
  // @params[IN] predict_state: given predicted state of track
  // @params[IN] time_diff: time interval from last updating
  // @return nothing
  void UpdateWithoutObject(const Eigen::VectorXf& predict_state,
                           const double time_diff);

 protected:
  // @brief smooth velocity over track history
  // @params[IN] new_object: new detected object for updating
  // @params[IN] time_diff: time interval from last updating
  // @return nothing
  void SmoothTrackVelocity(const std::shared_ptr<TrackedObject>& new_object,
                           const double time_diff);

  // @brief smooth orientation over track history
  // @return nothing
  void SmoothTrackOrientation();

  // @brief check whether track is static or not
  // @params[IN] new_object: new detected object just updated
  // @params[IN] time_diff: time interval between last two updating
  // @return true if track is static, otherwise return false
  bool CheckTrackStaticHypothesis(const std::shared_ptr<Object>& new_object,
                                  const double time_diff);

  // @brief sub strategy of checking whether track is static or not via
  // considering the velocity angle change
  // @params[IN] new_object: new detected object just updated
  // @params[IN] time_diff: time interval between last two updating
  // @return true if track is static, otherwise return false
  bool CheckTrackStaticHypothesisByVelocityAngleChange(
      const std::shared_ptr<Object>& new_object, const double time_diff);

 private:
  ObjectTrack();

 public:
  // algorithm setup
  static tracker_config::ModelConfigs::FilterType s_filter_method_;
  BaseFilter* filter_;

  // basic info
  int idx_;
  int age_;
  int total_visible_count_;
  int consecutive_invisible_count_;
  double period_;

  std::shared_ptr<TrackedObject> current_object_;

  // history
  std::deque<std::shared_ptr<TrackedObject>> history_objects_;

  // states
  // NEED TO NOTICE: All the states would be collected mainly based on states
  // of tracked object. Thus, update tracked object when you update the state
  // of track !!!!!
  bool is_static_hypothesis_;
  Eigen::Vector3f belief_anchor_point_;
  Eigen::Vector3f belief_velocity_;
  Eigen::Matrix3f belief_velocity_uncertainty_;
  Eigen::Vector3f belief_velocity_accelaration_;

 private:
  // global setup
  static int s_track_idx_;
  static int s_track_cached_history_size_maximum_;
  static double s_speed_noise_maximum_;
  static double s_acceleration_noise_maximum_;

  DISALLOW_COPY_AND_ASSIGN(ObjectTrack);
};  // class ObjectTrack

Step 1. 预处理

/// file in apollo/modules/perception/obstacle/lidar/tracker/hm_tracker/hm_tracker.cc
bool HmObjectTracker::Track(const std::vector<ObjectPtr>& objects,
                            double timestamp, const TrackerOptions& options,
                            std::vector<ObjectPtr>* tracked_objects) {
  // A. track setup
  if (!valid_) {
    valid_ = true;
    return Initialize(objects, timestamp, options, tracked_objects);
  }
  // B. preprocessing
  // B.1 transform given pose to local one
  TransformPoseGlobal2Local(&velo2world_pose);
  // B.2 construct objects for tracking
  std::vector<TrackedObjectPtr> transformed_objects;
  ConstructTrackedObjects(objects, &transformed_objects, velo2world_pose,options);
  ...
}

bool HmObjectTracker::Initialize(const std::vector<ObjectPtr>& objects,
                                 const double& timestamp,
                                 const TrackerOptions& options,
                                 std::vector<ObjectPtr>* tracked_objects) {
  global_to_local_offset_ = Eigen::Vector3d(-velo2world_pose(0, 3), -velo2world_pose(1, 3), -velo2world_pose(2, 3));
  // B. preprocessing
  // B.1 coordinate transformation
  TransformPoseGlobal2Local(&velo2world_pose);
  // B.2 construct tracked objects
  std::vector<TrackedObjectPtr> transformed_objects;
  ConstructTrackedObjects(objects, &transformed_objects, velo2world_pose, options);
  // C. create tracks
  CreateNewTracks(transformed_objects, unassigned_objects);
  time_stamp_ = timestamp;
  // D. collect tracked results
  CollectTrackedResults(tracked_objects);
  return true;
}

预处理阶段主要分两个模块:A.跟踪建立(track setup)和B.预处理(preprocess)。跟踪建立过程,主要是对上述得到的物体对象进行跟踪目标的建立,这是Track第一次被调用的时候进行的,后续只需要进行跟踪对象更新即可。建立过程相对比较简单,主要包含:

  1. 物体对象坐标系转换。(原先的lidar坐标系–>lidar局部ENU坐标系/有方向性)
  2. 对每个物体创建跟踪对象,加入跟踪列表。
  3. 记录现在被跟踪的对象

从上面代码来看,预处理阶段两模块重复度很高,这里我们就介绍Initialize对象跟踪建立函数。

(1) 第一步是进行坐标系的变换。

这里我们注意到一个平移向量global_to_local_offset_,他是lidar坐标系到世界坐标系的变换矩阵velo2world_trans的平移成分,前面高精地图ROI过滤器小节我们讲过: local局部ENU坐标系跟world世界坐标系之间只有平移成分,没有旋转。所以这里取了转变矩阵的平移成分,其实就是world世界坐标系转换到lidar局部ENU坐标系的平移矩阵(变换矩阵)。P_local = P_world + global_to_local_offset_

/// file in apollo/modules/perception/obstacle/lidar/tracker/hm_tracker/hm_tracker.cc
void HmObjectTracker::TransformPoseGlobal2Local(Eigen::Matrix4d* pose) {
  (*pose)(0, 3) += global_to_local_offset_(0);
  (*pose)(1, 3) += global_to_local_offset_(1);
  (*pose)(2, 3) += global_to_local_offset_(2);
}

从上面的TransformPoseGlobal2Local函数代码我们可以得到一个没有平移成分,只有旋转成分的变换矩阵velo2world_pose,这个矩阵有什么作用?很简单,这个矩阵就是lidar坐标系到lidar局部ENU坐标系的转换矩阵。

(2) 第二步中需要根据前面CNN检测到的物体来创建跟踪对象。

也就是将Object包装到TrackedObject中,那我们先来看一下TrackedObject类里面的成分:

名称 备注
ObjectPtr object_ptr Object对象指针
Eigen::Vector3f barycenter 重心,取该类所有点云xyz的平均值得到
Eigen::Vector3f center 中心, bbox4个角点外加平均高度计算得到
Eigen::Vector3f velocity 速度,卡尔曼滤波器预测得到
Eigen::Matrix3f velocity_uncertainty 不确定速度
Eigen::Vector3f acceleration 加速度
ObjectType type 物体类型,行人、自行车、车辆等
float association_score

从上面表格可以看到,TrackedObject封装了Object,并且只增加了少量速度,加速度等额外信息。

/// file in apollo/modules/perception/obstacle/lidar/tracker/hm_tracker/hm_tracker.cc
void HmObjectTracker::ConstructTrackedObjects(
    const std::vector<ObjectPtr>& objects,
    std::vector<TrackedObjectPtr>* tracked_objects, const Eigen::Matrix4d& pose,
    const TrackerOptions& options) {
  int num_objects = objects.size();
  tracked_objects->clear();
  tracked_objects->resize(num_objects);
  for (int i = 0; i < num_objects; ++i) {
    ObjectPtr obj(new Object());
    obj->clone(*objects[i]);
    (*tracked_objects)[i].reset(new TrackedObject(obj));                  // create new TrackedObject with object
    // Computing shape featrue
    if (use_histogram_for_match_) {
      ComputeShapeFeatures(&((*tracked_objects)[i]));                     // compute shape feature
    }
    // Transforming all tracked objects
    TransformTrackedObject(&((*tracked_objects)[i]), pose);               // transform coordinate from lidar frame to local ENU frame
    // Setting barycenter as anchor point of tracked objects
    Eigen::Vector3f anchor_point = (*tracked_objects)[i]->barycenter;
    (*tracked_objects)[i]->anchor_point = anchor_point;
    // Getting lane direction of tracked objects
    pcl_util::PointD query_pt;                                            // get lidar's world coordinate equals lidar2world_trans's translation part  
    query_pt.x = anchor_point(0) - global_to_local_offset_(0);
    query_pt.y = anchor_point(1) - global_to_local_offset_(1);
    query_pt.z = anchor_point(2) - global_to_local_offset_(2);
    Eigen::Vector3d lane_dir;
    if (!options.hdmap_input->GetNearestLaneDirection(query_pt, &lane_dir)) {
      lane_dir = (pose * Eigen::Vector4d(1, 0, 0, 0)).head(3);            // get nearest line direction from hd map
    }
    (*tracked_objects)[i]->lane_direction = lane_dir.cast<float>();
  }
}

ConstructTrackedObjects是由物体对象来创建跟踪对象的代码,这个过程相对来说比较简单易懂,没大的难点,下面就解释一下具体的功能。

  • 针对vector& objects中的每个对象,创建对应的TrackedObject,并且计算他的shape feature,这个特征计算比较简单,先计算物体xyz三个坐标轴上的最大和最小值,分别将其划分成10等份,对每个点xyz坐标进行bins投影与统计。最后的到的特征就是[x_bins,y_bins,z_bins]一共30维,归一化(除点云数量)后得到最终的shape feature。
  • TransformTrackedObject函数进行跟踪物体的方向、中心、原始点云、多边形角点、重心等进行坐标系转换。lidar坐标系变换到local ENU坐标系。
  • 根据lidar的世界坐标系坐标查询高精地图HD map计算车道线方向

(3) 对新建的跟踪对象(TrackedObject)建立跟踪,正式进行跟踪(加入进ObjectTrack)。

/// file in apollo/modules/perception/obstacle/lidar/tracker/hm_tracker/hm_tracker.cc
void HmObjectTracker::CreateNewTracks(
    const std::vector<TrackedObjectPtr>& new_objects,
    const std::vector<int>& unassigned_objects) {
  // Create new tracks for objects without matched tracks
  for (size_t i = 0; i < unassigned_objects.size(); i++) {
    int obj_id = unassigned_objects[i];
    ObjectTrackPtr track(new ObjectTrack(new_objects[obj_id]));
    object_tracks_.AddTrack(track);
  }
}

同时函数CollectTrackedResults会将当前正在跟踪的对象(世界坐标系坐标形式)保存到向量中,该部分代码比较简单就不贴出来了。

Step 2. 卡尔曼滤波,跟踪物体对象(卡尔曼滤波阶段1: Predict)

在预处理阶段,每个物体Object类经过封装以后,产生一个对应的ObjectTrack过程类,里面封装了对应要跟踪的物体(TrackedObject,由Object封装而来)。这个阶段的工作就是对跟踪物体TrackedObject进行卡尔曼滤波并预测其运动方向。

首先,在这里我们简单介绍一下卡尔曼滤波的一些基础公式,方便下面理解。


一个系统拥有一个状态方程和一个观测方程。观测方程是我们能宏观看到的一些属性,在这里比如说汽车重心xyz的位置和速度;而状态方程是整个系统里面的一些状态,包含能观测到的属性(如汽车重心xyz的位置和速度),也可能包含其他一些看不见的属性,这些属性甚至我们都不能去定义它的物理意义。因此观测方程的属性是状态方程的属性的一部分现在有:

状态方程: X t = A t , t − 1 X t − 1 + W t X_t = A_{t,t-1}X_{t-1} + W_t Xt=At,t1Xt1+Wt, 其中$W_t \to N(0,Q) $

观测方程: Z t = C t X t + V t Z_t = C_tX_t + V_t Zt=CtXt+Vt, 其中$V_t \to N(0,R) $

卡尔曼滤波分别两个阶段,分别是预测Predict与更新Update:

  • Predict预测阶段
    • 利用上时刻t-1最优估计 X t − 1 X_{t-1} Xt1预测当前时刻状态 X t , t − 1 = A t , t − 1 X t − 1 X_{t,t-1} = A_{t,t-1}X_{t-1} Xt,t1=At,t1Xt1,这个 X t , t − 1 X_{t,t-1} Xt,t1不是t时刻的最优状态,只是估计出来的状态
    • 利用上时刻t-1最优协方差矩阵 P t − 1 P_{t-1} Pt1预测当前时刻协方差矩阵 P t , t − 1 = A t , t − 1 P t − 1 A t , t − 1 T + Q P_{t,t-1} = A_{t,t-1}P_{t-1}{A_{t,t-1}}^T + Q Pt,t1=At,t1Pt1At,t1T+Q,这个 P t , t − 1 P_{t,t-1} Pt,t1也不是t时刻最优协方差
  • Update更新阶段
    • 利用 X t , t − 1 X_{t,t-1} Xt,t1估计出t时刻最优状态 X t = X t , t − 1 + H t [ Z t − C t X t , t − 1 ] X_t = X_{t,t-1} + H_t[Z_t - C_tX_{t,t-1}] Xt=Xt,t1+Ht[ZtCtXt,t1], 其中 H t = P t , t − 1 C t T [ C t P t , t − 1 C t T + R ] − 1 H_t = P_{t,t-1}{C_t}^T[C_tP_{t,t-1}{C_t}^T + R]^{-1} Ht=Pt,t1CtT[CtPt,t1CtT+R]1
    • 利用 P t , t − 1 P_{t,t-1} Pt,t1估计出t时刻最优协方差矩阵 P t = [ I − H t C t ] P t , t − 1 P_t = [I - H_tC_t]P_{t,t-1} Pt=[IHtCt]Pt,t1

最终t从1开始递归计算k时刻的最优状态 X k X_k Xk与最优协方差矩阵 P t P_t Pt


/// file in apollo/modules/perception/obstacle/lidar/tracker/hm_tracker/hm_tracker.cc
bool HmObjectTracker::Track(const std::vector<ObjectPtr>& objects,
                            double timestamp, const TrackerOptions& options,
                            std::vector<ObjectPtr>* tracked_objects) {
  // A. track setup
  ...
  // B. preprocessing
  // B.1 transform given pose to local one
  ...
  // B.2 construct objects for tracking
  ...
  // C. prediction
  std::vector<Eigen::VectorXf> tracks_predict;
  ComputeTracksPredict(&tracks_predict, time_diff);
  ...
}

void HmObjectTracker::ComputeTracksPredict(std::vector<Eigen::VectorXf>* tracks_predict, const double& time_diff) {
  // Compute tracks' predicted states
  std::vector<ObjectTrackPtr>& tracks = object_tracks_.GetTracks();
  for (int i = 0; i < no_track; ++i) {
    (*tracks_predict)[i] = tracks[i]->Predict(time_diff);   // track every tracked object in object_tracks_(ObjectTrack class) 
  }
}

从代码中我们可以看到,这个过程其实就是对object_tracks_列表中每个物体调用其Predict函数进行滤波跟踪(object_tracks_是上阶段Object–TrackedObject–ObjectTrack的依次封装)。接下去我们就对这个Predict函数进行深层次的挖掘和分析,看看它实现了卡尔曼过滤器的那个阶段工作。

object_tracks_:在第一次运行的时候初始化的
/// file in apollo/modules/perception/obstacle/lidar/tracker/hm_tracker/object_track.cc
Eigen::VectorXf ObjectTrack::Predict(const double& time_diff) {
  // Get the predict of filter
  Eigen::VectorXf filter_predict = filter_->Predict(time_diff);
  // Get the predict of track
  Eigen::VectorXf track_predict = filter_predict;
  track_predict(0) = belief_anchor_point_(0) + belief_velocity_(0) * time_diff;
  track_predict(1) = belief_anchor_point_(1) + belief_velocity_(1) * time_diff;
  track_predict(2) = belief_anchor_point_(2) + belief_velocity_(2) * time_diff;
  track_predict(3) = belief_velocity_(0);
  track_predict(4) = belief_velocity_(1);
  track_predict(5) = belief_velocity_(2);
  return track_predict;
}

/// file in apollo/modules/perception/obstacle/lidar/tracker/hm_tracker/kalman_filter.cc
Eigen::VectorXf KalmanFilter::Predict(const double& time_diff) {
  // Compute predict states
  Eigen::VectorXf predicted_state;
  predicted_state.resize(6);
  predicted_state(0) = belief_anchor_point_(0) + belief_velocity_(0) * time_diff;
  predicted_state(1) = belief_anchor_point_(1) + belief_velocity_(1) * time_diff;
  predicted_state(2) = belief_anchor_point_(2) + belief_velocity_(2) * time_diff;
  predicted_state(3) = belief_velocity_(0);
  predicted_state(4) = belief_velocity_(1);
  predicted_state(5) = belief_velocity_(2);
  // Compute predicted covariance
  Propagate(time_diff);
  return predicted_state;
}

void KalmanFilter::Propagate(const double& time_diff) {
  // Only propagate tracked motion
  ity_covariance_ += s_propagation_noise_ * time_diff * time_diff;
}

从上面两个函数可以明显看到这个阶段就是卡尔曼滤波器的Predict阶段。同时可以看到

  1. track_predict/predicted_state相当于卡尔曼滤波其中的 X t , t − 1 X_{t,t-1} Xt,t1, belief_anchor_point_belief_velocity_相当于 X t X_t Xt, ity_covariance_交替存储 P t P_t Pt P t , t − 1 P_{t,t-1} Pt,t1(Why?可以从上面的卡尔曼滤波器公式看到 P t P_t Pt在估测完 P t , t − 1 P_{t,t-1} Pt,t1以后就没用了,所以可以覆盖存储,节省部分空间)

  2. 状态方程和观测方程其实本质上是一样,也就是相同维度的。都是6维,分别表示重心的xyz坐标和重心xyz的速度。同时在这个应用中,短时间间隔内。当前时刻重心位置=上时刻重心位置 + 上时刻速度*时间差,所以可知卡尔曼滤波器中 A t , t − 1 ≡ 1 A_{t,t-1}\equiv1 At,t11, KaTeX parse error: Undefined control sequence: \* at position 6: Q = I\̲*̲ts^2

  3. 该过程工作:首先利用上时刻的最优估计belief_anchor_point_belief_velocity_(等同于 X t − 1 X_{t-1} Xt1)估计出t时刻的状态predicted_state(等同于 X t , t − 1 X_{t,t-1} Xt,t1); 然后估计当前时刻的协方差矩ity_covariance_( P t − 1 P_{t-1} Pt1 P t , t − 1 P_{t,t-1} Pt,t1交替存储)。

Step 3. 匈牙利算法比配,关联检测物体和跟踪物体

/// file in apollo/modules/perception/obstacle/lidar/tracker/hm_tracker/hm_tracker.cc
bool HmObjectTracker::Track(const std::vector<ObjectPtr>& objects,
                            double timestamp, const TrackerOptions& options,
                            std::vector<ObjectPtr>* tracked_objects) {
  // A. track setup
  ...
  // B. preprocessing
  // B.1 transform given pose to local one
  ...
  // B.2 construct objects for tracking
  ...
  // C. prediction
  ...
  // D. match objects to tracks
  std::vector<TrackObjectPair> assignments;
  std::vector<int> unassigned_objects;
  std::vector<int> unassigned_tracks;
  std::vector<ObjectTrackPtr>& tracks = object_tracks_.GetTracks();
  if (matcher_ != nullptr) {
    matcher_->Match(&transformed_objects, tracks, tracks_predict, &assignments, &unassigned_tracks, &unassigned_objects);
  }
  ...
}

/// file in apollo/modules/perception/obstacle/lidar/tracker/hm_tracker/hungarian_matcher.cc
void HungarianMatcher::Match(std::vector<TrackedObjectPtr>* objects,
                             const std::vector<ObjectTrackPtr>& tracks,
                             const std::vector<Eigen::VectorXf>& tracks_predict,
                             std::vector<TrackObjectPair>* assignments,
                             std::vector<int>* unassigned_tracks,
                             std::vector<int>* unassigned_objects) {
  // A. computing association matrix
  Eigen::MatrixXf association_mat(tracks.size(), objects->size());
  ComputeAssociateMatrix(tracks, tracks_predict, (*objects), &association_mat);

  // B. computing connected components
  std::vector<std::vector<int>> object_components;
  std::vector<std::vector<int>> track_components;
  ComputeConnectedComponents(association_mat, s_match_distance_maximum_,
                             &track_components, &object_components);
  // C. matching each sub-graph
  ...
}

这个阶段主要的工作是匹配CNN分割+MinBox检测到的物体和当前ObjectTrack的跟踪物体。主要的工作为:

  • A. Object和TrackedObject之间关联矩阵association_mat计算
  • B. 子图划分,利用上述的关联矩阵和设定的阈值(两两评分小于阈值则互相关联,即节点之间链接),将矩阵分割成一系列子图
  • C. 匈牙利算法进行二分图匹配,得到cost最小的(Object,TrackedObject)连接对
  1. 关联矩阵association_mat计算

经过CNN分割与MinBox构建以后可以得到N个Object,而目前跟踪列表中有M个TrackedObject,所以需要构建一个NxM的关联矩阵,矩阵中每个元素(即关联评分)的计算共分为5个子项。

  • 重心位置坐标距离差异评分
  • 物体方向差异评分
  • 标定框尺寸差异评分
  • 点云数量差异评分
  • 外观特征差异评分

最终以0.6,0.2,0.1,0.1,0.5的权重加权求和得到关联评分。

/// file in apollo/modules/perception/obstacle/lidar/tracker/hm_tracker/track_object_distance.cc
float TrackObjectDistance::ComputeDistance(const ObjectTrackPtr& track,
                                           const Eigen::VectorXf& track_predict,
                                           const TrackedObjectPtr& new_object) {
  // Compute distance for given trakc & object
  float location_distance = ComputeLocationDistance(track, track_predict, new_object);
  float direction_distance = ComputeDirectionDistance(track, track_predict, new_object);
  float bbox_size_distance = ComputeBboxSizeDistance(track, new_object);
  float point_num_distance = ComputePointNumDistance(track, new_object);
  float histogram_distance = ComputeHistogramDistance(track, new_object);

  float result_distance = s_location_distance_weight_ * location_distance +            // s_location_distance_weight_ = 0.6
                          s_direction_distance_weight_ * direction_distance +          // s_direction_distance_weight_ = 0.2
                          s_bbox_size_distance_weight_ * bbox_size_distance +          // s_bbox_size_distance_weight_ = 0.1
                          s_point_num_distance_weight_ * point_num_distance +          // s_point_num_distance_weight_ = 0.1
                          s_histogram_distance_weight_ * histogram_distance;           // s_histogram_distance_weight_ = 0.5
  return result_distance;
}

各个子项的计算方式,这里以文字形式描述,假设:

Object重心坐标为(x1,y1,z1),方向为(dx1,dy1,dz1),bbox尺寸为(l1,w1,h1), shape featrue为30维向量sf1,包含原始点云数量n1

TrackedObject重心坐标为(x2,y2,z2),方向为(dx2,dy2,dz2),bbox尺寸为(l2,w2,h2), shape featrue为30维向量sf2,包含原始点云数量n2

则有:

  • 重心位置坐标距离差异评分location_distance计算

l o c a t i o n _ d i s t a n c e = ( x 1 − x 2 ) 2 + ( y 1 − y 2 ) 2 location\_distance = \sqrt{{(x1 - x2)}^2 + {(y1 - y2)}^2} location_distance=(x1x2)2+(y1y2)2

如果速度太大,则需要用方向向量去正则惩罚,具体可以参考代码

  • 物体方向差异评分direction_distance计算

方向差异其实就是计算两个向量的夹角:

c o s θ = a ⋅ b / ( ∣ a ∣ ⋅ ∣ b ∣ ) cos\theta = a·b/(|a|·|b|) cosθ=ab/(ab)

夹角越大,差异越大,cos值越小;夹角越大,差异越大,cos值越大

最后使用1-cos计算评分,差异越小,评分越大。

  • 标定框尺寸差异评分bbox_size_distance计算

代码中首先计算两个量dot_val_00dot_val_01

/// file in apollo/master/modules/perception/obstacle/lidar/tracker/hm_tracker/track_object_distance.cc
float TrackObjectDistance::ComputeBboxSizeDistance(const ObjectTrackPtr& track, const TrackedObjectPtr& new_object) {
  double dot_val_00 = fabs(old_bbox_dir(0) * new_bbox_dir(0) + old_bbox_dir(1) * new_bbox_dir(1));
  double dot_val_01 = fabs(old_bbox_dir(0) * new_bbox_dir(1) - old_bbox_dir(1) * new_bbox_dir(0));
  bool bbox_dir_close = dot_val_00 > dot_val_01;

  if (bbox_dir_close) {
    float diff_1 = fabs(old_bbox_size(0) - new_bbox_size(0)) / std::max(old_bbox_size(0), new_bbox_size(0));
    float diff_2 = fabs(old_bbox_size(1) - new_bbox_size(1)) / std::max(old_bbox_size(1), new_bbox_size(1));
    size_distance = std::min(diff_1, diff_2);
  } else {
    float diff_1 = fabs(old_bbox_size(0) - new_bbox_size(1)) / std::max(old_bbox_size(0), new_bbox_size(1));
    float diff_2 = fabs(old_bbox_size(1) - new_bbox_size(0)) / std::max(old_bbox_size(1), new_bbox_size(0));
    size_distance = std::min(diff_1, diff_2);
  }
  return size_distance;
}

这两个量有什么意义?这里简单解释一下,从计算方式可以看到:

其实dot_val_00是两个坐标的点积,数学计算形式上是方向1投影到方向2向量上得到向量3,最后向量3模乘以方向2模长,这么做可以估算方向差异。因为,当方向1和方向2两个向量夹角靠近0或180度时,投影向量很长,dot_val_00这个点积的值会很大。dot_val_00越大说明两个方向越接近。

同理dot_val_01上文我们提到过,差积的模可以衡量两个向量组成的四边形面积大小,这么做也可以估算方向差异。因为,当方向1和方向2两个向量夹角靠近90度时,组成的四边形面积最大,dot_val_01这个差积的模会很大。dot_val_00越大说明两个方向越背离。

  • 点云数量差异评分point_num_distance计算

p o i n t _ n u m _ d i s t a n c e = ∣ n 1 − n 2 ∣ / m a x ( n 1 , n 2 ) point\_num\_distance = |n1-n2|/max(n1,n2) point_num_distance=n1n2/max(n1,n2)

  • 外观特征差异评分histogram_distance计算

h i s t o g r a m _ d i s t a n c e = ∑ m = 0 30 ∣ s f 1 [ m ] − s f 2 [ m ] ∣ histogram\_distance = \sum_{m=0}^{30} |sf1[m]-sf2[m]| histogram_distance=m=030sf1[m]sf2[m]

  1. 子图划分

子图划分首先根据上步骤计算的association_mat矩阵,利用超参数s_match_distance_maximum_=4,关联值小于阈值的判定为连接,否则不连接。最终得到的连接矩阵大小为(N+M)x(N+M)

图的保存:

std::vector> nb_graph;

长度:N+M 代表左边N个顶点,右边M个顶点
数组中存储与其下标对应的顶点 有相连关系的 顶点下标
如下图所示:

apollo_目标跟踪_第1张图片

void HungarianMatcher::ComputeConnectedComponents(
    const Eigen::MatrixXf& association_mat, const float& connected_threshold,
    std::vector<std::vector<int>>* track_components,
    std::vector<std::vector<int>>* object_components) {
  // Compute connected components within given threshold
  int no_track = association_mat.rows();
  int no_object = association_mat.cols();
  std::vector<std::vector<int>> nb_graph;
  nb_graph.resize(no_track + no_object);
  for (int i = 0; i < no_track; i++) {
    for (int j = 0; j < no_object; j++) {
      if (association_mat(i, j) <= connected_threshold) {
        nb_graph[i].push_back(no_track + j);
        nb_graph[j + no_track].push_back(i);
      }
    }
  }

  std::vector<std::vector<int>> components;
  ConnectedComponentAnalysis(nb_graph, &components);  // sub_graph segment
  ...
}

主要的子图划分工作在ConnectedComponentAnalysis函数完成,具体的可以参考代码,一个比较简单地广度优先搜索。最后得到的components二维向量中,每一行为一个子图的组成元素。

  1. 匈牙利算法对每个子图匹配

匹配的算法主要还是匈牙利算法的矩阵形式,跟wiki百科的基本描述一致,可以参考主页匈牙利算法

Step 4. 卡尔曼滤波,更新跟踪物体位置与速度信息(卡尔曼滤波阶段2:Update阶段)

这个阶段做的工作比较重要,对上述Hungarian Matcher得到的追踪对。

  • 计算真实的观测变量,包括真实观测到的车速度与加速度 Z v t {Zv_t} Zvt Z a t Za_t Zat
  • 由上时刻最优速度与加速度 X v t − 1 Xv_{t-1} Xvt1 X a t − 1 Xa_{t-1} Xat1 估测当前时刻的速度与加速度 X v t , t − 1 Xv_{t,t-1} Xvt,t1 X a t , t − 1 Xa_{t,t-1} Xat,t1
  • 由估测速度与加速度 X v t , t − 1 Xv_{t,t-1} Xvt,t1 X a t , t − 1 Xa_{t,t-1} Xat,t1,更新得到t时刻最优速度与加速度 X v t {Xv_t} Xvt X a t Xa_t Xat

另外这里还要一个说明,ObjectTrack类不仅封装了TrackedObject类,同时也封装了KalmanFilter类,KalmanFilter自己保存了上时刻最优状态,上时刻最优协方差矩阵,当前时刻最优状态等信息。TrackedObject、ObjectTrack里面也有这些状态。

注意:KalmanFilter里面是滤波后的原始数据(没有实际应用的限制条件加入);TrackedObject和ObjectTrack类同样保存了一份状态信息,这些状态信息是从KalmanFilter中得到的原始信息,并且加入实际应用限制滤波以后的状态信息;ObjectTrack类里面的状态是需要依赖TrackedObject类的,所以务必先更新TrackedObject再更新ObjectTrack的状态。总之三者状态更新顺序为:KalmanFilter -> TrackedObject -> ObjectTrack

/// file in apollo/modules/perception/obstacle/lidar/tracker/hm_tracker/hm_tracker.cc
bool HmObjectTracker::Track(const std::vector<ObjectPtr>& objects,
                            double timestamp, const TrackerOptions& options,
                            std::vector<ObjectPtr>* tracked_objects) {
   // E. update tracks
  // E.1 update tracks with associated objects
  UpdateAssignedTracks(&tracks_predict, &transformed_objects, assignments, time_diff);
  // E.2 update tracks without associated objects
  UpdateUnassignedTracks(tracks_predict, unassigned_tracks, time_diff);
  DeleteLostTracks();
  // E.3 create new tracks for objects without associated tracks
  CreateNewTracks(transformed_objects, unassigned_objects);
  // F. collect tracked results
  CollectTrackedResults(tracked_objects);
  return true;
}

void HmObjectTracker::UpdateAssignedTracks(
    std::vector<Eigen::VectorXf>* tracks_predict,
    std::vector<TrackedObjectPtr>* new_objects,
    const std::vector<TrackObjectPair>& assignments, const double& time_diff) {
  // Update assigned tracks
  std::vector<ObjectTrackPtr>& tracks = object_tracks_.GetTracks();
  for (size_t i = 0; i < assignments.size(); i++) {
    int track_id = assignments[i].first;
    int obj_id = assignments[i].second;
    tracks[track_id]->UpdateWithObject(&(*new_objects)[obj_id], time_diff);
  }
}

void HmObjectTracker::UpdateUnassignedTracks(
    const std::vector<Eigen::VectorXf>& tracks_predict,
    const std::vector<int>& unassigned_tracks, const double time_diff) {
  // Update tracks without matched objects
  std::vector<ObjectTrackPtr>& tracks = object_tracks_.GetTracks();
  for (size_t i = 0; i < unassigned_tracks.size(); ++i) {
    int track_id = unassigned_tracks[i];
    tracks[track_id]->UpdateWithoutObject(tracks_predict[track_id], time_diff);
  }
}

从上述的代码可以看到,更新过程有ObjectTrack::UpdateWithObjectObjectTrack::UpdateWithoutObject两个函数完成,这两个函数间接调用kalman滤波器完成滤波更新,接下去我们简单地分析ObjectTrack::UpdateWithObject函数的流程。

/// file in apollo/modules/perception/obstacle/lidar/tracker/hm_tracker/object_track.cc 
void ObjectTrack::UpdateWithObject(TrackedObjectPtr* new_object, const double& time_diff) {

  // A. update object track
  // A.1 update filter
  filter_->UpdateWithObject((*new_object), current_object_, time_diff);
  filter_->GetState(&belief_anchor_point_, &belief_velocity_);
  filter_->GetOnlineCovariance(&belief_velocity_uncertainty_);

  (*new_object)->anchor_point = belief_anchor_point_;
  (*new_object)->velocity = belief_velocity_;
  (*new_object)->velocity_uncertainty = belief_velocity_uncertainty_;

  belief_velocity_accelaration_ = ((*new_object)->velocity - current_object_->velocity) / time_diff;
  // A.2 update track info
  ...

  // B. smooth object track
  // B.1 smooth velocity
  SmoothTrackVelocity((*new_object), time_diff);
  // B.2 smooth orientation
  SmoothTrackOrientation();
}

从代码中也可以间接看出更新的过程A.1和A.2是更新KalmanFilter和TrackedObject状态信息,B是更新ObjectTrack状态,这里必须按顺序来更新!

  1. KalmanFilter滤波器状态更新

主要由KalmanFilter::UpdateWithObject函数完成,计算过成分下面几步:

  • Step1. 计算更新评分 ComputeUpdateQuality(new_object, old_object)

这个过程主要是计算更新力度,因为每个Object和对应的跟踪目标TrackedObject之间有一个关联系数association_score,这个系数衡量两个目标之间的相似度,所以这里需要增加对目标的更新力度参数。

计算关联力度: update_quality_according_association_score = 1 - association_score / s_association_score_maximum_。默认s_association_score_maximum_= 1,关联越大(相似度越大),更新力度越大

计算点云变化力度: update_quality_according_point_num_change = 1 - |n1 - n2| / max(n1, n2)。点云变化越小,更新力度越大

最终取两个值的较小值最为最终的更新力度。

  • Step2. 计算当前时刻的速度measured_velocity和和加速度measured_acceleration(这两个变量相当于卡尔曼滤波中的观测变量 Z t Z_t Zt)

首先计算重心速度: measured_anchor_point_velocity = [NewObject_barycenter(x,y,z) - OldObject_barycenter(x,y,z)] / timediff。timediff是两次计算的时间差,很简单地计算方式

其次计算标定框(中心)速度:measured_bbox_center_velocity = [NewObject_center(x,y,z) - OldObject_center(x,y,z)] / timediff。这里的中心区别于上面的重心,重心是所有点云的平均值;重心是MinBox的中心值。还有一个需要注意的是,如果求出来的中心速度方向和重心方向相反,这时候有干扰,中心速度暂时置为0。

然后计算标定框角点速度:

A. 根据NewObject的点云计算bbox(这不是MinBox),并求出中心center,然后根据方向求出4个点。

如果NewObject方向是dir,那么首先对dir进行归一化得到 d i r n o r m a l = d i r / ∣ d i r ∣ 2 = ( n x , n y , 0 ) dir_{normal}=dir/|dir|^2=(nx,ny,0) dirnormal=dir/dir2=(nx,ny,0),然后求他的正交方向dir_ortho=(-ny,nx,0),如果中心点坐标center,那么左上角的坐标就是: center+dir*size[0]*0.5+ortho_dir*size[1]*0.5。根据这个公式可以计算出其他三个点的坐标。

B. 计算标定框bbox四个角点的速度: bbox_corner_velocity = ((new_bbox_corner - old_bbox_corner) / time_diff)公式与上面的重心、中心计算方式一样。

C. 计算4个角点的在主方向上的速度,去最小的点最为标定框角点速度。只需要将B中的bbox_corner_velocity投影到主方向即可。

最后在重心速度、重心速度、bbox角速度中选择速度增益最小的最后最终物体的增益。增益=当前速度-上时刻最优速度

加速度measured_acceleration计算比较简单,采用最近3次的速度(v1,t1),(v2,t2),(v3,t3),然后加速度a=(v3-v1)/(t2+t3)。注意(v2,t2)意思是某一时刻最优估计速度为v2,且距离上次的时间差为t2,所以三次测量的时间差为t2+t3。速度变化为v3-v1。

  • Step3. 估算最优的速度与加速度(卡尔曼滤波Update步骤)

首先,计算卡尔曼增益 H t = P t , t − 1 C t T [ C t P t , t − 1 C t T + R ] − 1 H_t = P_{t,t-1}{C_t}^T[C_tP_{t,t-1}{C_t}^T + R]^{-1} Ht=Pt,t1CtT[CtPt,t1CtT+R]1,在apollo代码中计算代码如下:

// Compute kalman gain
Eigen::Matrix3d mat_c = Eigen::Matrix3d::Identity();                                 // C_t
Eigen::Matrix3d mat_q = s_measurement_noise_ * Eigen::Matrix3d::Identity();          // R_t
Eigen::Matrix3d mat_k = velocity_covariance_ * mat_c.transpose() *                   // H_t
      (mat_c * velocity_covariance_ * mat_c.transpose() + mat_q).inverse();

从上面可知,代码和我们给出的结果是一致的。

然后,由当前时刻的估算速度 X t , t − 1 X_{t,t-1} Xt,t1、观测变量 Z t Z_t Zt以及卡尔曼增益 H t H_t Ht,得到当前时刻的最优速度估计 X t = X t , t − 1 + H t [ Z t − C t X t , t − 1 ] X_t = X_{t,t-1} + H_t[Z_t - C_tX_{t,t-1}] Xt=Xt,t1+Ht[ZtCtXt,t1],在apollo代码中计算了速度增益,也就是 X t − X t , t − 1 X_t-X_{t,t-1} XtXt,t1

// Compute posterior belief
Eigen::Vector3d measured_velocity_d = measured_velocity.cast<double>();                      // Zv_t
Eigen::Vector3d priori_velocity = belief_velocity_ + belief_acceleration_gain_ * time_diff;  // Xv_{t,t-1}
Eigen::Vector3d velocity_gain = mat_k * (measured_velocity_d - mat_c * priori_velocity);     // Gain = Xv_t - Xv_{t,t-1}

然后对速度增益进行平滑并且保存当前t时刻最优速度以及最优加速度

// Breakdown
ComputeBreakdownThreshold();
if (velocity_gain.norm() > breakdown_threshold_) {
  velocity_gain.normalize();
  velocity_gain *= breakdown_threshold_;
}

belief_anchor_point_ = measured_anchor_point_d;
belief_velocity_ = priori_velocity + velocity_gain;          // Xv_t = Xv_{t,t-1} + Gain
belief_acceleration_gain_ = velocity_gain / time_diff;       // Acc_t = Xv_t / timediff

最后就是速度整流并且修正估计协方差矩阵 P t , t − 1 P_{t,t-1} Pt,t1,得到当前时刻最优协方差矩阵 P t = [ I − H t C t ] P t , t − 1 P_t=[I-H_tC_t]P_{t,t-1} Pt=[IHtCt]Pt,t1,在这个应用中 C t ≡ 1 C_t\equiv1 Ct1

// Adaptive
if (s_use_adaptive_) {
  belief_velocity_ -= belief_acceleration_gain_ * time_diff;
  belief_acceleration_gain_ *= update_quality_;
  belief_velocity_ += belief_acceleration_gain_ * time_diff;
}

// Compute posterior covariance
velocity_covariance_ = (Eigen::Matrix3d::Identity() - mat_k * mat_c) * velocity_covariance_;   // P_t

加速度更新与上述速度更新方法一致。

  • Step4. 缓存更新信息

将观测变量measured_velocity和时间差time_diff缓存,同时使用观测速度measured_velocity对实时协方差矩阵online_velocity_covariance_进行更新

  1. TrackedObject状态更新

设置TrackedObject的重心,速度(滤波器得到的t时刻最优速度belief_velocity_),加速度([最优速度belief_velocity_ - OldObject的最优速度]/时间差)

更新跟踪时长(++age),目标可见次数(++total_visible_count_),跟踪总时长(period_ += time_diff),连续不可见时长置0(consecutive_invisible_count_=0)

  1. ObjectTrack状态更新(速度与方向平滑滤波)

由原始KalmanFilter中的各个状态信息,加入实际应用中的限制进行滤波得到ObjectTrack的状态信息,这些信息才是真实被使用的。

对跟踪物体的速度整流过程如下(ObjectTrack::SmoothTrackVelocity):

  • 如果物体的加速度增益查过一定阈值(s_acceleration_noise_maximum_, 默认为5),那么当前速度保持上时刻的速度。
  • 否则,对小速度物体进行修建。计算物体的速度,默认s_speed_noise_maximum_ = 0.4
    • 如果velocity_is_noise = speed < (s_speed_noise_maximum_ / 2) ,则判定为噪声
    • 如果velocity_is_small = speed < (s_speed_noise_maximum_ / 1),则判定为小速度
    • 计算物体两个时刻角度的变化,fabs(velocity_angle_change) > M_PI / 4.0,如果cos值小于pi/4(45度),说明物体没有角度变化
      最终判断:if(velocity_is_noise || (velocity_is_small && is_velocity_angle_change)) 如果速度是噪声,或者速度很小方向不变,那么认定车是静止的。
      对于车是静止的,真实速度和加速度都设置为0.

这里需要注意:

// NEED TO NOTICE: claping small velocity may not reasonable when the true
velocity of target object is really small. e.g. a moving out vehicle in
a parking lot. Thus, instead of clapping all the small velocity, we clap
those whose history trajectory or performance is close to a static one.

按照官方代码提醒,其实这样对小速度物体进行修剪时不太合理,因为某些情况下物体速度确实很小,但是他确实是在运动。E.g. 汽车倒车的时候,速度小,但是不能被忽略。所以最好的方法是根据历史的轨迹(重心,anchor_point)来判断物体在小速度的情况下是否是运动的。

对跟踪物体的方向整流过程如下(ObjectTrack::SmoothTrackOrientation),如果物体运动比较明显velocity_is_obvious = current_speed > (s_speed_noise_maximum_ * 2)(大于0.4m/s),那么当前运动方向为物体速度的方向;否则设定为车道线方向。

就这样,经过三步骤,跟踪配对的物体(Object-TrackedObject存在)完成了状态信息的更新,主要包括当前时刻最优速度、方向、加速度等信息。


如果跟踪物体中没有找到对应的Object与之匹配,就需要使用UpdateUnassignedTracks函数来更新跟踪物体的信息。从上面我们可以看到,匹配成功的可以用Object的属性来计算观测变量,间接估算出t时刻的最优状态。 但是未匹配的TrackedObject无法因为找不到Object,所以无法了解当前时刻真实能测量到的位置、速度与加速度信息,因此只能依赖自身上时刻的最优状态来推算出当前时候的状态信息(注意,这个推算出来的不是最优状态)。

对未找到Object的跟踪物体,更新过程如下:

  1. 使用2.4.2节中的估算数据来预测当前时刻的状态
Eigen::Vector3f predicted_shift = predict_state.tail(3) * time_diff;
new_obj->anchor_point = current_object_->anchor_point + predicted_shift;
new_obj->barycenter = current_object_->barycenter + predicted_shift;
new_obj->center = current_object_->center + predicted_shift;

其中predicted_shift是利用卡尔曼滤波Predict阶段预测到的当前时刻物体重心位置与速度状态 X p t , t − 1 Xp_{t,t-1} Xpt,t1 X v t , t − 1 Xv_{t,t-1} Xvt,t1,乘以时间差就可以得到这个时间差内的位移,去更新中心,重心。

  1. 上时刻TrackedObject里面的原始点云和多边形坐标也加上这个位移,完成更新。

  2. 更新KalmanFilter里面的原始状态信息,KalmanFilter::UpdateWithoutObject,KalmanFilter只更新重心坐标,不需要更新速度和加速度(因为无法更新,缺少观测数据Z,不能使用卡尔曼滤波器的Update过程去更新)。

  3. 更新TrackedObject状态信息,更新跟踪时长(++age),跟踪总时长(period_ += time_diff),更新连续不可见时长置(++consecutive_invisible_count_=0)

  4. 更新历史缓存

更新完匹配成功和不成功的跟踪物体以后,下一步就是从跟踪列表中删掉丢失的跟踪物体。遍历整个跟踪列表:

  1. 可见次数/跟踪时长小于阈值(s_track_visible_ratio_minimum_,默认0.6),删除
  2. 连续不可见次数大于阈值(s_track_consecutive_invisible_maximum_,默认1),删除

如果Object没有找到对应的TrackedObject与之匹配,那么就创建新的跟踪目标,并且加入跟踪队列。

最终对HM物体跟踪做一个总结与梳理,物体跟踪主要是对上述CNN分割与MinBox边框构建产生的Object对一个跟踪与匹配,主要流程是:

  • Step1,预处理,Object里面的中心,重心,点云,多边形凸包从lidar坐标系转换成局部ENU坐标系。
  • Step2. 将坐标转换完成Object封装成TrackedObject,方便后续加入跟踪列表
  • Step3. 使用卡尔曼滤波Predict阶段,对正处于跟踪列表中的跟踪物体进行当前时刻重心位置、速度的预测
  • Step4. 使用当前检测到的Object(封装成了TrackedObject),去和跟踪列表中的物体进行匹配
    • 计算Object与TrackedObject的关联矩阵
      • 重心位置坐标距离差异评分
      • 物体方向差异评分
      • 标定框尺寸差异评分
      • 点云数量差异评分
      • 外观特征差异评分
    • 根据关联矩阵,配合阈值,划分子图
    • 对于每个子图使用匈牙利匹配算法(Hungarian Match)进行匹配,得到,
      • 成功匹配(有Object计算观测数据),更新KalmanFilter状态(Update阶段), 更新TrackedObject状态,更新ObjectTrack状态
      • 没有对应的Object(无法得到观测数据,无法使用卡尔曼滤波估算最优速度),更新部分KalmanFilter状态(仅重心),跟新TrackedObject状态,更新ObjectTrack状态
      • 创建新的TrackedObject,加入跟踪列表
    • 删除丢失的跟踪目标
      • 可见次数/跟踪时长过小
      • 连续不可见次数过大

代码逻辑梳理(swc)

分割出object后—>

主程序入口:

/// call tracker
if (tracker_ != nullptr) {
    TrackerOptions tracker_options;
    tracker_options.velodyne_trans = velodyne_trans;
    tracker_options.hdmap = hdmap;
    tracker_options.hdmap_input = hdmap_input_;
    
    
    if (!tracker_->Track(objects, timestamp_, tracker_options,
                         &(out_sensor_objects->objects))) {
        
        
        
        AERROR << "failed to call tracker.";
        out_sensor_objects->error_code = common::PERCEPTION_ERROR_PROCESS;
        PublishDataAndEvent(timestamp_, out_sensor_objects);
        return;
    }
}
/*  out_sensor_objects 的定义
std::shared_ptr out_sensor_objects(new SensorObjects);

				...

  std::vector> objects;
				...
};

跟踪程序入口Track(),把检测到的object组成数组,输入函数,输出带有跟踪信息的object

// @brief track detected objects over consecutive frames
// @params[IN] objects: recently detected objects[检测到的物体vector]
// @params[IN] timestamp: timestamp of recently detected objects[时间戳]
// @params[IN] options: tracker options with necessary information
// @params[OUT] tracked_objects: tracked objects with tracking information[输入的是指针,所以这也是输出信息vector]
// @return true if track successfully, otherwise return false
bool Track(const std::vector<std::shared_ptr<Object>>& objects,
           double timestamp, 
           const TrackerOptions& options,// 这个可以输入localpose代替
           std::vector<std::shared_ptr<Object>>* tracked_objects);

进入到Track()函数,由以下几个部分组成:

Track():
A. track setup
B. preprocessing
	B.1 transform given pose to local one
	B.2 construct objects for tracking
C. prediction
D. match objects to tracks
E. update tracks
	E.1 update tracks with associated objects
	E.2 update tracks without associated objects
	E.3 create new tracks for objects without associated tracks
F. collect tracked results

A. track setup 跟踪设置

A的功能主要是初始化,获得坐标转换矩阵,计算前后帧时间差

类变量valid_表示是否初始化.如果false,进行初始化

  if (!valid_) {
    valid_ = true;
    return InitializeTrack(objects, timestamp, options, tracked_objects);
  }

进入到InitializeTrack()函数,这个函数只在初始化的时候执行一次

// 输入参数和Track()相同
// @return true if initialize successfully, otherwise return false
bool InitializeTrack(const std::vector<std::shared_ptr<Object>>& objects,
                     const double timestamp, 
                     const TrackerOptions& options,
                     std::vector<std::shared_ptr<Object>>* tracked_objects);

由以下几个部分组成:

A. track setup
B. preprocessing
	B.1 coordinate transformation
	B.2 construct tracked objects
C. create tracks
D. collect tracked results

主要函数:

// A. track setup
// B.2 construct tracked objects
std::vector<std::shared_ptr<TrackedObject>> transformed_objects;
ConstructTrackedObjects(objects, &transformed_objects, velo2world_pose,
options);

进入到ConstructTrackedObjects()函数,这个是构造跟踪对象的函数

// @brief construct tracked objects via necessray transformation & feature
// computing
// @params[IN] objects: objects for construction
// @params[OUT] tracked_objects: constructed objects
// @params[IN] pose: pose using for coordinate transformation
// @params[IN] options: tracker options with necessary information
// @return nothing
void ConstructTrackedObjects(
    const std::vector<std::shared_ptr<Object>>& objects,
    std::vector<std::shared_ptr<TrackedObject>>* tracked_objects,
    const Eigen::Matrix4d& pose, // 这个可以输入localpose代替
    const TrackerOptions& options);
/* void ConstructTrackedObjects() */
int num_objects = objects.size();		// 检测到的物体个数
tracked_objects->clear();
tracked_objects->resize(num_objects);
for (int i = 0; i < num_objects; ++i) {
    std::shared_ptr<Object> obj(new Object());
    obj->clone(*objects[i]);
    // 把每一个object放到tracked_objects中对应的位置上,TrackedObject封装了object
    (*tracked_objects)[i].reset(new TrackedObject(obj));
    // Computing shape featrue计算形状特征,供后续匹配match用
    if (use_histogram_for_match_) {
        ComputeShapeFeatures(&((*tracked_objects)[i]));
    }
    // Transforming all tracked objects 坐标系转换
    TransformTrackedObject(&((*tracked_objects)[i]), pose);
    // Setting barycenter as anchor point of tracked objects
    Eigen::Vector3f anchor_point = (*tracked_objects)[i]->barycenter;
    (*tracked_objects)[i]->anchor_point = anchor_point;
    // Getting lane direction of tracked objects 寻找object对应的车道线方向(*)
    pcl_util::PointD query_pt;
    query_pt.x = anchor_point(0) - global_to_local_offset_(0);
    query_pt.y = anchor_point(1) - global_to_local_offset_(1);
    query_pt.z = anchor_point(2) - global_to_local_offset_(2);
    Eigen::Vector3d lane_dir;
    if (!options.hdmap_input->GetNearestLaneDirection(query_pt, &lane_dir)) {
        AERROR << "Failed to initialize the lane direction of tracked object!";
        // Set lane dir as host dir if query lane direction failed
        lane_dir = (pose * Eigen::Vector4d(1, 0, 0, 0)).head(3);
    }
    (*tracked_objects)[i]->lane_direction = lane_dir.cast<float>();
}

至此,就把检测到的object封装成了TrackedObject,

具体的

step1

使用object构造TrackedObject,在构造函数中,把输入的object填入成员变量object_ptr中,并计算成员变量barycenter,bboxcenter,size,direction,type,``anchor_point`

初始化lane_direction,velocity,acceleration,velocity_uncertainty

TrackedObject::TrackedObject(std::shared_ptr<Object> obj_ptr)
    : object_ptr(obj_ptr) {
  if (object_ptr != nullptr) {
      // 计算质心
    barycenter = GetCloudBarycenter<apollo::perception::pcl_util::Point>(
                     object_ptr->cloud)
                     .cast<float>();
    center = object_ptr->center.cast<float>();
    size = Eigen::Vector3f(object_ptr->length, object_ptr->width,
                           object_ptr->height);
    direction = object_ptr->direction.cast<float>();
    lane_direction = Eigen::Vector3f::Zero();
    anchor_point = barycenter;
    velocity = Eigen::Vector3f::Zero();
    acceleration = Eigen::Vector3f::Zero();
    type = object_ptr->type;
    velocity_uncertainty = Eigen::Matrix3f::Identity() * 5;
  }
}

step2

计算每一个object的形状特征,给tracked_object的成员变量object_ptr的成员变量std::vector shape_features;赋值

step3

坐标系转换,车体坐标系转换成golbal坐标,更新anchor_point

至此,ConstructTrackedObjects()函数把检测模块输出的objects转换为transformed_objects,建立了跟踪对象,然后进行下一步C. create tracks

  // C. create tracks
  std::vector<int> unassigned_objects; // 表示没有被分配的object的id?
  unassigned_objects.resize(transformed_objects.size());
  std::iota(unassigned_objects.begin(), unassigned_objects.end(), 0);
  // unassigned_objects:[0:transformed_objects.size()-1]
  CreateNewTracks(transformed_objects, unassigned_objects);
  time_stamp_ = timestamp;

进入函数CreateNewTracks()

// @brief create new tracks for objects without matched track
// @params[IN] new_objects: recently detected objects
// @params[IN] unassigned_objects: index of unassigned objects
// @return nothing
void CreateNewTracks(
    const std::vector<std::shared_ptr<TrackedObject>>& new_objects,
    const std::vector<int>& unassigned_objects);

void HmObjectTracker::CreateNewTracks(
    const std::vector<std::shared_ptr<TrackedObject>>& new_objects,
    const std::vector<int>& unassigned_objects) {
  // Create new tracks for objects without matched tracks
  for (size_t i = 0; i < unassigned_objects.size(); ++i) {
    int obj_id = unassigned_objects[i];
    ObjectTrackPtr track(new ObjectTrack(new_objects[obj_id]));
    object_tracks_.AddTrack(track);
  }
}

CreateNewTracks()函数中,对于没有被分配的TrackedObject,在初始化中,检测到的object都是为被分配的,使用TrackedObject初始化构造track,进入构造函数:

​ 在ObjectTrack中封装了一个BaseFilter类,在构造函数中将其初始化为KalmanFilter

 filter_ = new KalmanFilter();

然后用输入的TrackedObject的属性初始化卡尔曼滤波器

filter_->Initialize(initial_anchor_point, initial_velocity);

然后,初始化跟踪信息,

ObjectTrack::GetNextTrackId();是静态成员函数,对静态成员变量s_track_idx_做自加操作,每多一个ObjectTrack实例,这个静态成员变量就加一,然后赋值给这个实例的idx_;

接着初始化其他的成员变量,并初始化输入TrackedObject对象的一些属性.

ObjectTrack::ObjectTrack(std::shared_ptr<TrackedObject> obj) {
  // Initialize filter
  Eigen::Vector3f initial_anchor_point = obj->anchor_point;
  Eigen::Vector3f initial_velocity = Eigen::Vector3f::Zero();
  if (s_filter_method_ == tracker_config::ModelConfigs::KALMAN_FILTER) {
    filter_ = new KalmanFilter();
  } else {
    filter_ = new KalmanFilter();
    AWARN << "invalid filter method! default filter (KalmanFilter) in use!";
  }
  filter_->Initialize(initial_anchor_point, initial_velocity);

  // Initialize track info
  idx_ = ObjectTrack::GetNextTrackId();
  age_ = 1;
  total_visible_count_ = 1;
  consecutive_invisible_count_ = 0;
  period_ = 0.0;
  current_object_ = obj;

  // Initialize track states
  is_static_hypothesis_ = false;
  belief_anchor_point_ = initial_anchor_point;
  belief_velocity_ = initial_velocity;
  const double uncertainty_factor = 5.0;
  belief_velocity_uncertainty_ =
      Eigen::Matrix3f::Identity() * uncertainty_factor;
  belief_velocity_accelaration_ = Eigen::Vector3f::Zero();
  // NEED TO NOTICE: All the states would be collected mainly based on states
  // of tracked object. Thus, update tracked object when you update the state
  // of track !!!!!
  obj->velocity = belief_velocity_;
  obj->velocity_uncertainty = belief_velocity_uncertainty_;

  // Initialize object direction with its lane direction
  obj->direction = obj->lane_direction;
}

这样就构造了一个新的ObjectTrack对象track,把它添加到tracker_的成员变量ObjectTrackSet object_tracks_;中:

object_tracks_.AddTrack(track);

PS:

其实HmObjectTracker::CreateNewTracks()函数只在两个地方被调用:

  1. 初始化的时候,
  2. 对于当前帧检测到的物体,在上一帧中没有与之匹配的

对于object_tracks_进行改变的地方

  1. HmObjectTracker::CreateNewTracks(): object_tracks_.AddTrack(track);
  2. HmObjectTracker::DeleteLostTracks(): object_tracks_.RemoveLostTracks();

初始化最后一步:

// D. collect tracked results
CollectTrackedResults(tracked_objects);

CollectTrackedResults()object_tracks_中存储的跟踪信息填到Track(const std::vector>& objects,double timestamp,const TrackerOptions& options,std::vector>* tracked_objects);tracked_objects中,完成跟踪信息的输出.

至此,初始化全部完成,把第一帧检测到的object先封装成TrackedObject,载使用封装好的TrackedObject构造ObjectTrack,把跟踪实例track添加到object_tracks_中,等待下一帧数据的到来==----->==

B. preprocessing

第一帧数据只用于初始化,初始化完成后,从第二帧数据开始追踪过程:

std::vector<std::shared_ptr<TrackedObject>> transformed_objects;
ConstructTrackedObjects(objects, &transformed_objects, velo2world_pose,
                        options);

ConstructTrackedObjects函数当前帧(eg:第二帧)检测出的objects封装成TrackedObject,保存在数组transformed_objects

C.prediction

// C. prediction
std::vector<Eigen::VectorXf> tracks_predict;
ComputeTracksPredict(&tracks_predict, time_diff);

这是卡尔曼滤波的预测阶段,tracks_predict存储预测结果;进入ComputeTracksPredict()函数:

// @brief compute predicted states of maintained tracks
// @params[OUT] tracks_predict: predicted states of maintained tracks
// @params[IN] time_diff: time interval for predicting
// @return nothing
void ComputeTracksPredict(std::vector<Eigen::VectorXf>* tracks_predict,
                          const double time_diff);

void HmObjectTracker::ComputeTracksPredict(
    std::vector<Eigen::VectorXf>* tracks_predict, const double time_diff) {
  // Compute tracks' predicted states
  int no_track = object_tracks_.Size();
  tracks_predict->resize(no_track);
  std::vector<ObjectTrackPtr>& tracks = object_tracks_.GetTracks();
  for (int i = 0; i < no_track; ++i) {
    (*tracks_predict)[i] = tracks[i]->Predict(time_diff);
  }
}

predict操作的执行函数:(*tracks_predict)[i] = tracks[i]->Predict(time_diff);

tracks[i]类型是ObjectTrackPtr,调用成员函数Predict(time_diff),下面进入这个函数:

Eigen::VectorXf ObjectTrack::Predict(const double time_diff) {
  // Get the predict of filter
  Eigen::VectorXf filter_predict = filter_->Predict(time_diff);
  // Get the predict of track 这个赋值操作没有看懂,下面的分元素赋值并没有用到filter_predict,难道只是给track_predict初始化???
  Eigen::VectorXf track_predict = filter_predict;
  track_predict(0) = belief_anchor_point_(0) + belief_velocity_(0) * time_diff;
  track_predict(1) = belief_anchor_point_(1) + belief_velocity_(1) * time_diff;
  track_predict(2) = belief_anchor_point_(2) + belief_velocity_(2) * time_diff;
  track_predict(3) = belief_velocity_(0);
  track_predict(4) = belief_velocity_(1);
  track_predict(5) = belief_velocity_(2);
  return track_predict;
}

由函数实现可知,在ObjectTrack中的状态state track_predict是一个6维向量:
X = [ x y z v x v y v z ] X=\begin{bmatrix} x \\ y \\ z \\ v_x\\ v_y\\ v_z\\ \end{bmatrix} X=xyzvxvyvz
状态转移矩阵为:
X k = [ 1 0 0 Δ t 0 0 0 1 0 0 Δ t 0 0 0 1 0 0 Δ t 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 ] ∗ X k − 1 = A ∗ X k − 1 X_k=\begin{bmatrix} 1 & 0 & 0 & \Delta t & 0 &0\\ 0 & 1 & 0 & 0 &\Delta t &0\\ 0 & 0 & 1 & 0 &0 & \Delta t\\ 1 & 0 & 0 & 0 & 0 &0\\ 0 & 1 & 0 & 0 & 0 &0\\ 0 & 0 & 1 & 0 & 0 &0\\ \end{bmatrix}*X_{k-1} =A*X_{k-1} Xk=100100010010001001Δt000000Δt000000Δt000Xk1=AXk1
至此,track的状态和filter_的状态都进行了预测;

predict之后进入下一步,更新update,但是update需要知道测量值,现在只知道track的预测值,当前帧所有的检测object的信息是观测值,但是不确定track和当前objects的匹配关系,所以要进行匹配,找到上一次track在当前帧中的对应object

D. match objects to tracks

/*
  // matcher
  std::unique_ptr matcher_;
  
  // 匈牙利匹配实例 
  matcher_.reset(new HungarianMatcher());
*/

std::vector<std::pair<int, int>> assignments;
std::vector<int> unassigned_objects;	// 未分配的objects  当前帧检测结果
std::vector<int> unassigned_tracks;		// 未分配的tracks	上一帧的跟踪目标
// 把上一帧的跟踪目标提取出来
std::vector<ObjectTrackPtr>& tracks = object_tracks_.GetTracks();
if (matcher_ != nullptr) {
    // 开始匹配
    matcher_->Match(&transformed_objects, tracks, tracks_predict, &assignments,
                    &unassigned_tracks, &unassigned_objects);
} else {
    AERROR << "matcher_ is not initiated. Please call Init() function before "
        "other functions.";
    return false;
}

进入匹配函数Match

// @brief match detected objects to tracks
// @params[IN] objects: new detected objects for matching
// @params[IN] tracks: maintaining tracks for matching
// @params[IN] tracks_predict: predicted state of maintained tracks
// @params[OUT] assignments: assignment pair of object & track
// @params[OUT] unassigned_tracks: tracks without matched object
// @params[OUT] unassigned_objects: objects without matched track
// @return nothing
void Match(std::vector<std::shared_ptr<TrackedObject>>* objects,
           const std::vector<ObjectTrackPtr>& tracks,
           const std::vector<Eigen::VectorXf>& tracks_predict,
           std::vector<std::pair<int, int>>* assignments,
           std::vector<int>* unassigned_tracks,
           std::vector<int>* unassigned_objects);

函数内部的原理逻辑:

  • A. Object和TrackedObject之间关联矩阵association_mat计算
  • B. 子图划分,利用上述的关联矩阵和设定的阈值(两两评分小于阈值则互相关联,即节点之间链接),将矩阵分割成一系列子图
  • C. 匈牙利算法进行二分图匹配,得到cost最小的(Object,TrackedObject)连接对

输出的信息:

std::vector<std::pair<int, int>> assignments;	// assignment pair of object & track
std::vector<int> unassigned_objects;			// objects without matched track
std::vector<int> unassigned_tracks;				// tracks without matched object
  • 对于匹配到的(track,detection),使用detection的信息update对应的track信息

  • 对于未匹配到的detection,初始化为新的track

  • 对于未匹配到的track,标记为丢失(age-1),但是仍然参与后续的匹配,知道丢失时间超过阈值

匹配完成后,开始卡尔曼滤波的第二阶段

E.update tracks

E.1 update tracks with associated objects

第一种情况,track和object匹配上了

UpdateAssignedTracks(&tracks_predict, &transformed_objects, assignments,time_diff);

进入UpdateAssignedTracks()函数:

// @brief update assigned tracks
// @params[IN] tracks_predict: predicted states of maintained tracks
// @params[IN] new_objects: recently detected objects
// @params[IN] assignments: assignment pair of 
// @params[IN] time_diff: time interval for updating
// @return nothing
void UpdateAssignedTracks(
    std::vector<Eigen::VectorXf>* tracks_predict,
    std::vector<std::shared_ptr<TrackedObject>>* new_objects,
    const std::vector<std::pair<int, int>>& assignments,
    const double time_diff);
void HmObjectTracker::UpdateAssignedTracks(
    std::vector<Eigen::VectorXf>* tracks_predict,
    std::vector<std::shared_ptr<TrackedObject>>* new_objects,
    const std::vector<std::pair<int, int>>& assignments,
    const double time_diff) {
  // Update assigned tracks
  std::vector<ObjectTrackPtr>& tracks = object_tracks_.GetTracks();
  for (size_t i = 0; i < assignments.size(); ++i) {
    int track_id = assignments[i].first;
    int obj_id = assignments[i].second;
    tracks[track_id]->UpdateWithObject(&(*new_objects)[obj_id], time_diff);
  }
}

先从assignments中取出来每一对匹配上的track和object的id,然后使用ObjectTrack成员函数UpdateWithObject()进行更新,现在进入UpdateWithObject()函数:

  // @brief update track with object
  // @params[IN] new_object: recent detected object for current updating
  // @params[IN] time_diff: time interval from last updating
  // @return nothing
  void UpdateWithObject(std::shared_ptr<TrackedObject>* new_object,
                        const double time_diff);

更新完成后,每一个track中的

belief_anchor_point_
belief_velocity_
belief_velocity_uncertainty_

都得到更新;

卡尔曼内部的预测和更新写在了一起

E.2 update tracks without associated objects

第二种情况,上一帧的track在本帧检测到的object中没有对应的object

你可能感兴趣的:(apollo_lidar,机器学习,目标跟踪)