- AGI框架探索
另一只又死又活的猫
开发十年,就只剩下这套Java开发体系了>>>随着对机器学习领域的深入探索,我渐渐迷上了AGI通用人工智能。所以,闲暇时就对AGI框架进行了深入的了解,看看哪些AGI框架与个人的理念相符,方便做进一步的研究之用。朋友给我分享了一篇收集和汇总AGI技术的文章,正好,我就以此为索引,对里面的每一个框架进行了考察:50个杀手级人工智能项目:https://mp.weixin.qq.com/s/qafBW
- PYTHON机器学习小项目教程:预测鸢尾花种类
jackispy
python机器学习人工智能
我们将使用经典的鸢尾花数据集来构建一个分类模型,该数据集包含150个样本,每个样本有四个特征:花萼长度、花萼宽度、花瓣长度和花瓣宽度。目标是根据这些特征预测鸢尾花的种类(山鸢尾、变色鸢尾或维吉尼亚鸢尾)。一、环境配置首先,确保你已经安装了必要的库。如:pandas、numpy等,命令如下所示pipinstallnumpypandasscikit-learnmatplotlib[-i镜像源网站]二、
- 基于KNN的鸢尾花分类预测模型
溪海莘
分类数据挖掘人工智能
基于KNN的鸢尾花分类预测模型.让机器实现对鸢尾花的分类分析,它会怎么做呢?我们首先列举出可能需要的要素:数据,模型和算法,效果评估。机器学习,它也是需要对自己的学习效果进行评估,因为它需要根据结果来调整参数。大多数情况需要人来介入这个过程,人们需要根据自身的经验来选取一些合适的参数,但是“爱偷懒”的数据科学家同时也提出一些自动化的程序来实现这一步骤。一、鸢尾花数据集1.1利用sklearn库导入
- Topaz Photo AI 人工智能图像处理 降噪
甜于酸
图像处理人工智能图像处理
介绍TopazPhotoAIMac版是一款人工智能图像处理软件,利用先进的AI技术为图像作品带来前所未有的提升。核心功能在于其智能降噪与细节增强能力,能够自动识别并去除照片中的噪点,同时保留并增强图像的细节和纹理,使照片更加清晰、细腻。具备图像分辨率提升特性,利用机器学习技术,分析并重建图像的细节,从而保持图像质量同时,显著提高图像的分辨率。提供自动调整色彩分布与对比度优化功能,使照片的色彩更加饱
- 探索Omniglot:一个无尽的手写字符集合
宋溪普Gale
探索Omniglot:一个无尽的手写字符集合omniglotomniglot-一个包含大量不同语言手写字符图像的数据集,用于机器学习模型的训练和评估。项目地址:https://gitcode.com/gh_mirrors/om/omniglot项目简介Omniglot是由BrendenLake等人创建的一个开源项目,其目标是提供一个广泛的手写字符集,用于研究人类和机器的学习能力。这个项目不仅仅是一
- 【DeepSeek零基础入门】从零开始:如何训练自己的AI模型
Evaporator Core
DeepSeek进阶开发与应用#DeepSeek快速入门deepseek应用开发实例deepseek
从零开始:如何训练自己的AI模型在人工智能的世界里,训练一个属于自己的AI模型,就像是在培养一个新生儿。你需要耐心、技巧,以及对数据的深刻理解。今天,我们将一起探索如何从零开始,训练一个AI模型,并通过一个具体的案例来加深理解。第一步:明确目标与选择框架在开始之前,首先要明确你的AI模型需要解决什么问题。是图像识别、自然语言处理,还是预测分析?明确目标后,选择一个合适的机器学习框架至关重要。Ten
- 【OpenCV】OpenCV 中各模块及其算子的详细分类
de之梦-御风
OpenCV4Net.net技术opencv分类人工智能
OpenCV的最新版本包含了500多个算子,这些算子覆盖了图像处理、计算机视觉、机器学习、深度学习、视频分析等多个领域。为了方便使用,OpenCV将这些算子分为多个模块,每个模块承担特定的功能。以下是OpenCV中各模块及其算子的详细分类:1.核心模块(Core)功能:提供基础数据结构(如Mat)、数学运算、内存管理、输入输出等基本操作。常用算子:数学运算:cv::add,cv::subtract
- DeepSeek 深度赋能客服岗:效率与洞察的双重飞跃
AI_DL_CODE
人工智能深度学习DeepSeek工作助理
摘要:本文聚焦于DeepSeek在客服服务岗的应用。它能凭借自然语言处理技术,快速理解客户咨询,精准提供解答方案;自动生成标准化、个性化的回复话术,大幅提升客服效率;利用机器学习对客户反馈进行深度分析,挖掘潜在需求与市场趋势。通过电商、互联网服务等行业案例,展现其实际成效。使用时需注意数据质量与隐私保护,促进与人工客服协同配合,持续优化学习。DeepSeek为客服工作带来变革,助力企业提升服务质量
- 解锁机器学习核心算法|朴素贝叶斯:分类的智慧法则
紫雾凌寒
AI炼金厂#机器学习算法机器学习算法分类朴素贝叶斯python深度学习人工智能
一、引言在机器学习的庞大算法体系中,有十种算法被广泛认为是最具代表性和实用性的,它们犹如机器学习领域的“十大神器”,各自发挥着独特的作用。这十大算法包括线性回归、逻辑回归、决策树、随机森林、K-近邻算法、K-平均算法、支持向量机、朴素贝叶斯算法、主成分分析(PCA)、神经网络。它们涵盖了回归、分类、聚类、降维等多个机器学习任务领域,是众多机器学习应用的基础和核心。而在这众多的算法中,朴素贝叶斯算法
- 解锁机器学习核心算法 | 线性回归:机器学习的基石
紫雾凌寒
AI炼金厂#机器学习算法算法机器学习线性回归人工智能深度学习aipython
在机器学习的众多算法中,线性回归宛如一块基石,看似质朴无华,却稳稳支撑起诸多复杂模型的架构。它是我们初涉机器学习领域时便会邂逅的算法之一,其原理与应用广泛渗透于各个领域。无论是预测房价走势、剖析股票市场波动,还是钻研生物医学数据、优化工业生产流程,线性回归皆能大显身手。本质上,线性回归是一种用于构建变量间线性关系的统计模型。它试图寻觅一条最佳拟合直线(或超平面),以使预测值与实际观测值之间的误差降
- AI环境初识
网络飞鸥
AI人工智能
在搭建AI环境时,当前流行的技术涉及多个方面,包括开发框架、深度学习库、硬件支持以及具体的应用技术等。以下是一些主要的技术趋势和流行技术:一、开发框架与深度学习库TensorFlow:由谷歌开发的一个开源机器学习库,广泛用于研究和生产环境。它提供了强大的张量计算能力和灵活的架构,支持广泛的机器学习和深度学习算法。PyTorch:由Facebook推出,也是一个广受欢迎的开源机器学习库。PyTorc
- 杰和推出面向人工智能应用的AI服务器
weixin_34211761
在这个数据爆炸的年代,我们获取数据的难度大大降低,但要获取数据的价值仅依靠简单的数据分析是不可行的。如果将大数据看作一个产业,那么数据深挖(挖掘)就是其中一项核心技术,数据深挖(挖掘)通常与计算机科学有关,如数据统计、数据检索、分析处理、机器学习等技术,而这些恰好是人工智能技术的优势。人工智能一直都是备受关注的热门领域,更是被认为是第四次工业革命。随着技术的不断开发及深入优化,人工智能以迅雷不及掩
- 机器学习数学通关指南——微积分基本概念
Shockang
机器学习数学通关指南机器学习微积分数学
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》正文函数一、函数的定义与本质映射关系:函数是实数集到实数集的映射(或更一般地,非空数集到数集的映射)。规范形式:f:D→Rf:D\to\mathbb{R}f:D→R,其中D⊆RD\subseteq\mathbb{R}D⊆R为定义域
- SVM(支持向量机)原理及数学推导全过程详解
子木呀
支持向量机人工智能分类算法SVM
由于格式问题,为方便阅读,请点击下方链接访问原文点击此处访问原文点击此处访问原文点击此处访问原文点击此处访问原文关于SVM网上已经有很多很多的前辈有过讲解,这两天自己在网上看了看资料,结合前辈们的文章对SVM进行了一个整理,把看的过程中产生的一些问题也进行了解答。本来想着总结得简洁明了又易懂,但SVM本就有严格的数学理论支撑,不像其他机器学习算法是一个黑箱,写完发现要尽量让小白也懂少不了具体的论述
- 【机器学习】支持向量机(SVM)详解:原理与优化
宸码
机器学习模式识别支持向量机机器学习算法人工智能数据挖掘python
支持向量机(SVM)详解:原理与优化支持向量机(SVM)详解1.基本概念2.数学原理2.1线性可分情况2.2最优化问题2.3拉格朗日对偶问题2.4核函数技巧(KernelTrick)2.5非线性分类与支持向量3.优缺点分析3.1优点3.2缺点4.SVM与其他算法的比较5.总结支持向量机(SVM)详解1.基本概念支持向量机(SupportVectorMachine,SVM)是一种强大的监督学习算法,
- 智能边缘计算:开启智能新时代
livefan
人工智能
什么是智能边缘计算?在当今数字化浪潮中,边缘计算已成为一个热门词汇。简单来说,边缘计算是一种分布式计算架构,它将数据处理和存储更靠近数据源的位置,而不是集中于远程数据中心。通过这种方式,边缘计算可以减少数据传输的延迟,提高响应速度,增强数据处理的实时性和效率。而智能边缘计算,是边缘计算架构在涉及数据分析、机器学习或人工智能的工作负载中的应用。一般来说,边缘架构是一种将数据或应用程序放置在网络边缘的
- 多档买卖盘逐笔委托逐笔成交进行大数据分析以及模型结果20250221
level2Tick
A股level2历史数据金融数据库
多档买卖盘逐笔委托逐笔成交进行大数据分析以及模型结果20250221采用Level2逐笔成交与逐笔委托的详细记录,这种毫秒级别的数据能揭露众多关键信息,如庄家意图、虚假交易,使所有交易行为透明化。这对交易大师分析主力习性大有裨益,对人工智能进行机器学习也非常合适,数据量大且精确。以下是今日根据Level2逐笔成交与委托数据观察到的部分股票现象:level2逐笔成交逐笔委托数据下载链接:https:
- 深度强化学习算法在金融交易决策中的优化应用【附数据】
算法与数据
算法
金融数据分析与建模专家金融科研助手|论文指导|模型构建✨专业领域:金融数据处理与分析量化交易策略研究金融风险建模投资组合优化金融预测模型开发深度学习在金融中的应用擅长工具:Python/R/MATLAB量化分析机器学习模型构建金融时间序列分析蒙特卡洛模拟风险度量模型金融论文指导内容:金融数据挖掘与处理量化策略开发与回测投资组合构建与优化金融风险评估模型期刊论文✅具体问题可以私信或查看文章底部二维码
- 物联网数据采集平台【物联网毕业论文】
算法与数据
物联网
物联网技术与数据分析|物联网系统设计|模型构建✨专业领域:物联网系统架构设计智能设备与传感器网络数据采集与处理物联网大数据分析智能家居与工业物联网边缘计算与云计算物联网安全与隐私保护擅长工具:Python/R/Matlab数据分析与建模物联网平台与设备编程数据流与实时监控系统设计机器学习与预测模型应用物联网协议(MQTT,CoAP,HTTP)物联网数据可视化工具✅物联网专业题目与数据:物联网毕业论
- 机器学习基础
dringlestry
机器学习人工智能
了解机器学习的基本概念,如监督学习、无监督学习、强化学习、模型评估指标(准确率、召回率、F1分数等)。机器学习(MachineLearning,ML)是人工智能(AI)的一个分支,它使计算机能够通过数据和经验自动改进,而无需明确编程。机器学习可以根据学习方式和数据的有无,分为以下几种基本类型:1.监督学习(SupervisedLearning)监督学习是一种机器学习类型,其中模型通过带标签的数据进
- AI人工智能带给企业什么影响
雪叶雨林
AI人工智能ai
在科技日新月异的今天,人工智能(AI)正以前所未有的速度和广度渗透到各行各业,对企业运营产生了深远的影响。这种影响不仅体现在技术层面的革新,更在于企业组织结构、工作流程、决策模式等多个维度的深刻变革。一、优化决策过程,提升精准度人工智能通过大数据分析和机器学习技术,能够处理和分析海量信息,为企业提供更为精准、实时的决策支持。相较于传统的人工分析,AI能够识别出数据中的微妙模式和趋势,帮助企业预见市
- 编程小白冲Kaggle每日打卡(14)--kaggle学堂:<机器学习简介>你的第一个机器学习模型
AZmax01
编程小白冲Kaggle每日打卡机器学习人工智能
Kaggle官方课程链接:YourFirstMachineLearningModel本专栏旨在Kaggle官方课程的汉化,让大家更方便地看懂。YourFirstMachineLearningModel建立你的第一个模型。好哇!选择建模数据你的数据集有太多的变量,你无法理解,甚至无法很好地打印出来。你如何将如此庞大的数据量缩减到你能理解的程度?我们将从使用直觉选择几个变量开始。后续课程将向您展示自动
- 微软Copilot官网入口- Copilot中文版国内使用入口
人工智能
微软Copilot:你的AI副驾驶,赋能未来工作与生活✨在数字化浪潮席卷全球的今天,效率和创造力已成为个人和企业成功的关键驱动力。微软Copilot应运而生,它不仅仅是一款软件,更像是一位人工智能副驾驶,旨在通过强大的AI技术,解放你的双手,激发你的灵感,助你驰骋于工作和生活的各个领域。核心功能:不止于智能,更在于赋能微软Copilot的核心在于其对自然语言处理(NLP)和机器学习(ML)的深度融
- Python+Spark地铁客流数据分析与预测系统 地铁大数据 地铁流量预测
qq_79856539
javaweb大数据pythonspark
本系统基于大数据设计并实现成都地铁客流量分析系统,使用网络爬虫爬取并收集成都地铁客流量数据,运用机器学习和时间序列分析等方法,对客流量数据进行预处理和特征选择,构建客流量预测模型,利用历史数据对模型进行训练和优化,实现客流量预测模型的部署和应用,通过系统界面展示预测结果。对预测模型进行评估和验证,并提出改进方案。设计步骤使用Python语言编写爬虫程序采集数据,并对原始数据集进行预处理;使用Pyt
- 【机器学习与数据挖掘实战】案例14:基于随机森林分类器的汽车公司客户细分预测
Francek Chen
机器学习与数据挖掘实战机器学习数据挖掘随机森林人工智能分类算法
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈机器学习与数据挖掘实战⌋⌋⌋机器学习是人工智能的一个分支,专注于让计算机系统通过数据学习和改进。它利用统计和计算方法,使模型能够从数据中自动提取特征并做出预测或决策。数据挖掘则是从大型数据集中发现模式、关联和异常的过程,旨在提取有价值的信息和知识。机器学习为数据挖掘提供了强大的分析工具,而数据挖掘则是机器学习应用的重要领域,两者相辅相成,共同推动
- 整理:4篇论文知识蒸馏引领高效模型新时代
mslion
多模态人工智能知识蒸馏
知识蒸馏(KnowledgeDistillation)是当前机器学习研究中的一个重要方向,特别是在模型压缩和效率优化等任务中。传统的深度学习模型往往依赖于复杂的大型网络,以获取卓越的性能。然而,这些庞大的模型对计算资源和存储空间的需求,使得它们在实际应用中,尤其是在边缘设备或移动端部署中面临巨大挑战。知识蒸馏技术致力于解决这一问题,其核心思想是通过一个“教师模型”向一个更小、更高效的“学生模型”传
- 【漫话机器学习系列】101.特征选择法之Lasso(Lasso For Feature Selection)
IT古董
漫话机器学习系列专辑机器学习人工智能
Lasso特征选择法详解1.Lasso回归简介Lasso(LeastAbsoluteShrinkageandSelectionOperator,最小绝对收缩和选择算子)是一种基于L1范数正则化的线性回归方法。它不仅能够提高模型的泛化能力,还可以自动进行特征选择,即将一些不重要的特征的系数收缩到0,从而减少模型的复杂度。2.Lasso回归的数学公式Lasso回归的目标函数如下:其中:是输入数据,w是
- 人工智能:从基础到前沿
顾漂亮
人工智能深度学习windows
目录目录1.引言2.人工智能基础2.1什么是人工智能?2.2人工智能的历史2.3人工智能的分类3.机器学习3.1机器学习概述3.2监督学习3.3无监督学习3.4强化学习4.深度学习4.1深度学习概述4.2神经网络基础4.3卷积神经网络(CNN)4.4循环神经网络(RNN)5.自然语言处理(NLP)5.1NLP概述5.2文本预处理5.3词嵌入5.4语言模型6.计算机视觉6.1计算机视觉概述6.2图像
- Python的那些事第二十八篇:数据分析与操作的利器Pandas
暮雨哀尘
Python的那些事信息可视化python开发语言pandas数据分析数据处理
Pandas:数据分析与操作的利器摘要Pandas是基于Python的开源数据分析库,广泛应用于数据科学、机器学习和商业智能等领域。它提供了高效的数据结构和丰富的分析工具,能够处理结构化数据、时间序列数据以及复杂的数据转换任务。本文从Pandas的基础概念入手,深入探讨其核心数据结构(Series和DataFrame),并结合实际案例,详细阐述数据导入导出、数据清洗、数据处理、分组聚合、数据可视化
- 深入浅出机器学习:概念、算法与实践
倔强的小石头_
AI机器学习算法人工智能
目录引言机器学习的基本概念什么是机器学习机器学习的基本要素机器学习的主要类型监督学习(SupervisedLearning)无监督学习(UnsupervisedLearning)强化学习(ReinforcementLearning)机器学习的一般流程总结引言在当今数字化时代,数据量呈爆炸式增长。机器学习作为一门多领域交叉学科,致力于让计算机系统从数据中自动学习模式和规律,进而实现对未知数据的预测和
- 二分查找排序算法
周凡杨
java二分查找排序算法折半
一:概念 二分查找又称
折半查找(
折半搜索/
二分搜索),优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而 查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表 分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步
- java中的BigDecimal
bijian1013
javaBigDecimal
在项目开发过程中出现精度丢失问题,查资料用BigDecimal解决,并发现如下这篇BigDecimal的解决问题的思路和方法很值得学习,特转载。
原文地址:http://blog.csdn.net/ugg/article/de
- Shell echo命令详解
daizj
echoshell
Shell echo命令
Shell 的 echo 指令与 PHP 的 echo 指令类似,都是用于字符串的输出。命令格式:
echo string
您可以使用echo实现更复杂的输出格式控制。 1.显示普通字符串:
echo "It is a test"
这里的双引号完全可以省略,以下命令与上面实例效果一致:
echo Itis a test 2.显示转义
- Oracle DBA 简单操作
周凡杨
oracle dba sql
--执行次数多的SQL
select sql_text,executions from (
select sql_text,executions from v$sqlarea order by executions desc
) where rownum<81;
&nb
- 画图重绘
朱辉辉33
游戏
我第一次接触重绘是编写五子棋小游戏的时候,因为游戏里的棋盘是用线绘制的,而这些东西并不在系统自带的重绘里,所以在移动窗体时,棋盘并不会重绘出来。所以我们要重写系统的重绘方法。
在重写系统重绘方法时,我们要注意一定要调用父类的重绘方法,即加上super.paint(g),因为如果不调用父类的重绘方式,重写后会把父类的重绘覆盖掉,而父类的重绘方法是绘制画布,这样就导致我们
- 线程之初体验
西蜀石兰
线程
一直觉得多线程是学Java的一个分水岭,懂多线程才算入门。
之前看《编程思想》的多线程章节,看的云里雾里,知道线程类有哪几个方法,却依旧不知道线程到底是什么?书上都写线程是进程的模块,共享线程的资源,可是这跟多线程编程有毛线的关系,呜呜。。。
线程其实也是用户自定义的任务,不要过多的强调线程的属性,而忽略了线程最基本的属性。
你可以在线程类的run()方法中定义自己的任务,就跟正常的Ja
- linux集群互相免登陆配置
林鹤霄
linux
配置ssh免登陆
1、生成秘钥和公钥 ssh-keygen -t rsa
2、提示让你输入,什么都不输,三次回车之后会在~下面的.ssh文件夹中多出两个文件id_rsa 和 id_rsa.pub
其中id_rsa为秘钥,id_rsa.pub为公钥,使用公钥加密的数据只有私钥才能对这些数据解密 c
- mysql : Lock wait timeout exceeded; try restarting transaction
aigo
mysql
原文:http://www.cnblogs.com/freeliver54/archive/2010/09/30/1839042.html
原因是你使用的InnoDB 表类型的时候,
默认参数:innodb_lock_wait_timeout设置锁等待的时间是50s,
因为有的锁等待超过了这个时间,所以抱错.
你可以把这个时间加长,或者优化存储
- Socket编程 基本的聊天实现。
alleni123
socket
public class Server
{
//用来存储所有连接上来的客户
private List<ServerThread> clients;
public static void main(String[] args)
{
Server s = new Server();
s.startServer(9988);
}
publi
- 多线程监听器事件模式(一个简单的例子)
百合不是茶
线程监听模式
多线程的事件监听器模式
监听器时间模式经常与多线程使用,在多线程中如何知道我的线程正在执行那什么内容,可以通过时间监听器模式得到
创建多线程的事件监听器模式 思路:
1, 创建线程并启动,在创建线程的位置设置一个标记
2,创建队
- spring InitializingBean接口
bijian1013
javaspring
spring的事务的TransactionTemplate,其源码如下:
public class TransactionTemplate extends DefaultTransactionDefinition implements TransactionOperations, InitializingBean{
...
}
TransactionTemplate继承了DefaultT
- Oracle中询表的权限被授予给了哪些用户
bijian1013
oracle数据库权限
Oracle查询表将权限赋给了哪些用户的SQL,以备查用。
select t.table_name as "表名",
t.grantee as "被授权的属组",
t.owner as "对象所在的属组"
- 【Struts2五】Struts2 参数传值
bit1129
struts2
Struts2中参数传值的3种情况
1.请求参数绑定到Action的实例字段上
2.Action将值传递到转发的视图上
3.Action将值传递到重定向的视图上
一、请求参数绑定到Action的实例字段上以及Action将值传递到转发的视图上
Struts可以自动将请求URL中的请求参数或者表单提交的参数绑定到Action定义的实例字段上,绑定的规则使用ognl表达式语言
- 【Kafka十四】关于auto.offset.reset[Q/A]
bit1129
kafka
I got serveral questions about auto.offset.reset. This configuration parameter governs how consumer read the message from Kafka when there is no initial offset in ZooKeeper or
- nginx gzip压缩配置
ronin47
nginx gzip 压缩范例
nginx gzip压缩配置 更多
0
nginx
gzip
配置
随着nginx的发展,越来越多的网站使用nginx,因此nginx的优化变得越来越重要,今天我们来看看nginx的gzip压缩到底是怎么压缩的呢?
gzip(GNU-ZIP)是一种压缩技术。经过gzip压缩后页面大小可以变为原来的30%甚至更小,这样,用
- java-13.输入一个单向链表,输出该链表中倒数第 k 个节点
bylijinnan
java
two cursors.
Make the first cursor go K steps first.
/*
* 第 13 题:题目:输入一个单向链表,输出该链表中倒数第 k 个节点
*/
public void displayKthItemsBackWard(ListNode head,int k){
ListNode p1=head,p2=head;
- Spring源码学习-JdbcTemplate queryForObject
bylijinnan
javaspring
JdbcTemplate中有两个可能会混淆的queryForObject方法:
1.
Object queryForObject(String sql, Object[] args, Class requiredType)
2.
Object queryForObject(String sql, Object[] args, RowMapper rowMapper)
第1个方法是只查
- [冰川时代]在冰川时代,我们需要什么样的技术?
comsci
技术
看美国那边的气候情况....我有个感觉...是不是要进入小冰期了?
那么在小冰期里面...我们的户外活动肯定会出现很多问题...在室内呆着的情况会非常多...怎么在室内呆着而不发闷...怎么用最低的电力保证室内的温度.....这都需要技术手段...
&nb
- js 获取浏览器型号
cuityang
js浏览器
根据浏览器获取iphone和apk的下载地址
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" content="text/html"/>
<meta name=
- C# socks5详解 转
dalan_123
socketC#
http://www.cnblogs.com/zhujiechang/archive/2008/10/21/1316308.html 这里主要讲的是用.NET实现基于Socket5下面的代理协议进行客户端的通讯,Socket4的实现是类似的,注意的事,这里不是讲用C#实现一个代理服务器,因为实现一个代理服务器需要实现很多协议,头大,而且现在市面上有很多现成的代理服务器用,性能又好,
- 运维 Centos问题汇总
dcj3sjt126com
云主机
一、sh 脚本不执行的原因
sh脚本不执行的原因 只有2个
1.权限不够
2.sh脚本里路径没写完整。
二、解决You have new mail in /var/spool/mail/root
修改/usr/share/logwatch/default.conf/logwatch.conf配置文件
MailTo =
MailFrom
三、查询连接数
- Yii防注入攻击笔记
dcj3sjt126com
sqlWEB安全yii
网站表单有注入漏洞须对所有用户输入的内容进行个过滤和检查,可以使用正则表达式或者直接输入字符判断,大部分是只允许输入字母和数字的,其它字符度不允许;对于内容复杂表单的内容,应该对html和script的符号进行转义替换:尤其是<,>,',"",&这几个符号 这里有个转义对照表:
http://blog.csdn.net/xinzhu1990/articl
- MongoDB简介[一]
eksliang
mongodbMongoDB简介
MongoDB简介
转载请出自出处:http://eksliang.iteye.com/blog/2173288 1.1易于使用
MongoDB是一个面向文档的数据库,而不是关系型数据库。与关系型数据库相比,面向文档的数据库不再有行的概念,取而代之的是更为灵活的“文档”模型。
另外,不
- zookeeper windows 入门安装和测试
greemranqq
zookeeper安装分布式
一、序言
以下是我对zookeeper 的一些理解: zookeeper 作为一个服务注册信息存储的管理工具,好吧,这样说得很抽象,我们举个“栗子”。
栗子1号:
假设我是一家KTV的老板,我同时拥有5家KTV,我肯定得时刻监视
- Spring之使用事务缘由(2-注解实现)
ihuning
spring
Spring事务注解实现
1. 依赖包:
1.1 spring包:
spring-beans-4.0.0.RELEASE.jar
spring-context-4.0.0.
- iOS App Launch Option
啸笑天
option
iOS 程序启动时总会调用application:didFinishLaunchingWithOptions:,其中第二个参数launchOptions为NSDictionary类型的对象,里面存储有此程序启动的原因。
launchOptions中的可能键值见UIApplication Class Reference的Launch Options Keys节 。
1、若用户直接
- jdk与jre的区别(_)
macroli
javajvmjdk
简单的说JDK是面向开发人员使用的SDK,它提供了Java的开发环境和运行环境。SDK是Software Development Kit 一般指软件开发包,可以包括函数库、编译程序等。
JDK就是Java Development Kit JRE是Java Runtime Enviroment是指Java的运行环境,是面向Java程序的使用者,而不是开发者。 如果安装了JDK,会发同你
- Updates were rejected because the tip of your current branch is behind
qiaolevip
学习永无止境每天进步一点点众观千象git
$ git push joe prod-2295-1
To git@git.dianrong.com:joe.le/dr-frontend.git
! [rejected] prod-2295-1 -> prod-2295-1 (non-fast-forward)
error: failed to push some refs to 'git@git.dianron
- [一起学Hive]之十四-Hive的元数据表结构详解
superlxw1234
hivehive元数据结构
关键字:Hive元数据、Hive元数据表结构
之前在 “[一起学Hive]之一–Hive概述,Hive是什么”中介绍过,Hive自己维护了一套元数据,用户通过HQL查询时候,Hive首先需要结合元数据,将HQL翻译成MapReduce去执行。
本文介绍一下Hive元数据中重要的一些表结构及用途,以Hive0.13为例。
文章最后面,会以一个示例来全面了解一下,
- Spring 3.2.14,4.1.7,4.2.RC2发布
wiselyman
Spring 3
Spring 3.2.14、4.1.7及4.2.RC2于6月30日发布。
其中Spring 3.2.1是一个维护版本(维护周期到2016-12-31截止),后续会继续根据需求和bug发布维护版本。此时,Spring官方强烈建议升级Spring框架至4.1.7 或者将要发布的4.2 。
其中Spring 4.1.7主要包含这些更新内容。