针对于某个任务,自己的训练数据不多,那怎么办?我们先找到一个同类的别人训练好的模型,把别人现成的训练好了的模型拿过来,换成自己的数据,调整一下参数,再训练一遍,这就是微调(fine-tune)。
迁移学习初衷是节省人工标注样本的时间,让模型可以通过一个已有的标记数据的领域向未标记数据领域进行迁移从而训练出适用于该领域的模型,直接对目标域从头开始学习成本太高,我们故而转向运用已有的相关知识来辅助尽快地学习新知识。
(推荐博客:https://blog.csdn.net/dakenz/article/details/85954548)
迁移学习按照学习方式可以分为基于样本的迁移,基于特征的迁移,基于模型的迁移,以及基于关系的迁移等。
对于不同的领域微调的方法也不一样,比如语音识别领域一般微调前几层,图片识别问题微调后面几层。(待细学)
导入相关库
%matplotlib inline
import torch,os,torchvision
import torch.nn as nn
import torch.nn.functional as F
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader, Dataset
from torchvision import datasets, models, transforms
from PIL import Image
from sklearn.model_selection import StratifiedShuffleSplit
torch.__version__
这里面我们使用官方训练好的resnet50来参加kaggle上面的 dog breed 狗的种类识别来做一个简单微调实例。
首先我们需要下载官方的数据解压,只要保持数据的目录结构即可,这里指定一下目录的位置,并且看下内容
DATA_ROOT = 'data'
all_labels_df = pd.read_csv(os.path.join(DATA_ROOT,'labels.csv'))
all_labels_df.head()
在Kaggle上的代码:
可以直接在Kaggle上导入Kaggle竞赛的数据Dog Breed Identification
DATA_ROOT = '../input/dog-breed-identification'
#../input/dog-breed-identification/labels.csv
all_labels_df = pd.read_csv(os.path.join(DATA_ROOT,'labels.csv'))
all_labels_df.head()
获取狗的分类根据分类进行编号
这里定义了两个字典,分别以名字和id作为对应,方便后面处理
breeds = all_labels_df.breed.unique()
breed2idx = dict((breed,idx) for idx,breed in enumerate(breeds))
idx2breed = dict((idx,breed) for idx,breed in enumerate(breeds))
len(breeds)#120
添加到列表中
all_labels_df['label_idx'] = [breed2idx[b] for b in all_labels_df.breed]
all_labels_df.head()
#由于我们的数据集不是官方指定的格式,我们自己定义一个数据集
class DogDataset(Dataset):
def __init__(self, labels_df, img_path, transform=None):
self.labels_df = labels_df
self.img_path = img_path
self.transform = transform
def __len__(self):
return self.labels_df.shape[0]
def __getitem__(self, idx):
image_name = os.path.join(self.img_path, self.labels_df.id[idx]) + '.jpg'
img = Image.open(image_name)
label = self.labels_df.label_idx[idx]
if self.transform:
img = self.transform(img)
return img, label
# 定义一些超参数
IMG_SIZE = 224 # resnet50的输入是224的所以需要将图片统一大小
BATCH_SIZE= 256 #这个批次大小需要占用4.6-5g的显存,如果不够的化可以改下批次,如果内存超过10G可以改为512
IMG_MEAN = [0.485, 0.456, 0.406]
IMG_STD = [0.229, 0.224, 0.225]
CUDA=torch.cuda.is_available()
DEVICE = torch.device("cuda" if CUDA else "cpu")
# 定义训练和验证数据的图片变换规则
train_transforms = transforms.Compose([
transforms.Resize(IMG_SIZE),
transforms.RandomResizedCrop(IMG_SIZE),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(30),
transforms.ToTensor(),
transforms.Normalize(IMG_MEAN, IMG_STD)
])
val_transforms = transforms.Compose([
transforms.Resize(IMG_SIZE),
transforms.CenterCrop(IMG_SIZE),
transforms.ToTensor(),
transforms.Normalize(IMG_MEAN, IMG_STD)
])
我们这里只分割10%的数据作为训练时的验证数据
# 使用官方的dataloader载入数据
image_transforms = {'train':train_transforms, 'valid':val_transforms}
train_dataset = DogDataset(train_df, os.path.join(DATA_ROOT,'train'), transform=image_transforms['train'])
val_dataset = DogDataset(val_df, os.path.join(DATA_ROOT,'train'), transform=image_transforms['valid'])
image_dataset = {'train':train_dataset, 'valid':val_dataset}
image_dataloader = {x:DataLoader(image_dataset[x],batch_size=BATCH_SIZE,shuffle=True,num_workers=0) for x in dataset_names}
dataset_sizes = {x:len(image_dataset[x]) for x in dataset_names}
开始配置网络,由于ImageNet是识别1000个物体,我们的狗的分类一共只有120,所以需要对模型的最后一层全连接层进行微调,将输出从1000改为120
model_ft = models.resnet50(pretrained=True) # 这里自动下载官方的预训练模型,并且
# 将所有的参数层进行冻结
for param in model_ft.parameters():
param.requires_grad = False
# 这里打印下全连接层的信息
print(model_ft.fc)
num_fc_ftr = model_ft.fc.in_features #获取到fc层的输入
model_ft.fc = nn.Linear(num_fc_ftr, len(breeds)) # 定义一个新的FC层
model_ft=model_ft.to(DEVICE)# 放到设备中
print(model_ft) # 最后再打印一下新的模型
print(model_ft.fc)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam([
{'params':model_ft.fc.parameters()}
], lr=0.001)#指定 新加的fc层的学习率
定义训练函数
def train(model,device, train_loader, epoch):
model.train()
for batch_idx, data in enumerate(train_loader):
x,y= data
x=x.to(device)
y=y.to(device)
optimizer.zero_grad()
y_hat= model(x)
loss = criterion(y_hat, y)
loss.backward()
optimizer.step()
print ('Train Epoch: {}\t Loss: {:.6f}'.format(epoch,loss.item()))
定义测试函数
def test(model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for i,data in enumerate(test_loader):
x,y= data
x=x.to(device)
y=y.to(device)
optimizer.zero_grad()
y_hat = model(x)
test_loss += criterion(y_hat, y).item() # sum up batch loss
pred = y_hat.max(1, keepdim=True)[1] # get the index of the max log-probability
correct += pred.eq(y.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(val_dataset),
100. * correct / len(val_dataset)))
训练9次,看看效果
for epoch in range(1, 10):
%time train(model=model_ft,device=DEVICE, train_loader=image_dataloader["train"],epoch=epoch)
test(model=model_ft, device=DEVICE, test_loader=image_dataloader["valid"])