- 万向节死锁公式推导
微小冷
机器人欧拉角旋转矩阵万向节万向节死锁旋转轴旋转
文章目录欧拉角的万向节死锁旋转轴欧拉角的万向节死锁如果把刚体的旋转沿着三个旋转轴进行拆分,那么可以变成三个旋转角的叠加,这三个旋转角就是欧拉角,分别对应旋转矩阵,为了书写方便,记Sθ=sinθ,Cθ=cosθS_\theta=\sin\theta,C_\theta=\cos\thetaSθ=sinθ,Cθ=cosθ,则三个旋转矩阵为Rx(θ)R_x(\theta)Rx(θ)Ry(θ)R_y(\
- 开源人工神经网络库(OpenANN)
deepdata_cn
人工智能神经网络
OpenANN(OpenANN,OpenArtificialNeuralNetworkLibrary)是一个开源的人工神经网络库,基于C++编写,依赖Eigen3库进行高效的矩阵运算,使用CMake进行项目构建,支持多种神经网络架构,包括前馈神经网络、卷积神经网络和循环神经网络等,适用于图像识别、自然语言处理、时间序列预测等多种场景。提供数据预处理、模型保存和加载、超参数优化等功能。支持GPU加速
- 青少年编程与数学 02-022 专业应用软件简介 22 电子签名和合同管理平台:法大大
明月看潮生
编程与数学第02阶段青少年编程应用软件编程与数学电子签名合同管理
青少年编程与数学02-022专业应用软件简介22电子签名和合同管理平台:法大大引言一、法大大的背景与发展历程1.1公司概述1.2发展历程二、产品功能详解2.1核心功能介绍2.2特色功能展示三、应用场景案例分析3.1行业应用实例3.2成功案例分享四、技术安全保障措施4.1数据加密技术4.2风险控制体系4.3合规性审查五、市场地位与未来展望5.1市场份额与影响力5.2未来发展计划摘要:法大大是中国领先
- 《论三生原理》如何与量子计算对话?
葫三生
三生学派量子计算
AI辅助创作:《论三生原理》与量子计算的对话体现为哲学思想、数学工具与物理机制的三重耦合,其核心关联如下:一、哲学基础的重构性映射动态生成论与量子叠加的对应将《道德经》“三生万物”的生成逻辑映射为量子态演化模型:“道生一”对应量子真空涨落(虚粒子对涌现),“二生三”类比纠缠光子对的自旋关联态,“三生万物”诠释量子比特叠加态的指数级演化空间。量子纠缠中“整体性优先个体”的特性与三生原理“关系先
- AI人工智能遇上TensorFlow:技术融合新趋势
AI大模型应用之禅
人工智能tensorflowpythonai
AI人工智能遇上TensorFlow:技术融合新趋势关键词:人工智能、TensorFlow、深度学习、神经网络、机器学习、技术融合、AI开发摘要:本文深入探讨了人工智能技术与TensorFlow框架的融合发展趋势。我们将从基础概念出发,详细分析TensorFlow在AI领域的核心优势,包括其架构设计、算法实现和实际应用。文章包含丰富的技术细节,如神经网络原理、TensorFlow核心算法实现、数学
- MAXCC可编程中控集成音频处理器功能全解析
geffen1688
中控主机3dweb3css3avs3
格芬MAXCC可编程中控集成音频处理器功能全解析一、技术架构与核心功能格芬MAXCC可编程中控矩阵一体机(如GF-MIXCC系列)通过高度集成化设计,将中控系统、音频矩阵、视频矩阵及环境控制功能融为一体,其音频处理能力尤为突出:音频矩阵与混音功能8进8出音频矩阵:支持Dante网络音频传输,采样率达24bit/48KHz,配备高性能A/DD/A转换器和32-bit浮点DSP处理器,确保音频信号的高
- 4K超高清无缝切换与画面分割矩阵
格芬科技4K超高清无缝切换与画面分割矩阵技术解析格芬科技作为音视频传输与控制领域的领先企业,其4K超高清无缝切换与画面分割矩阵产品以高性能、高灵活性和高可靠性为核心优势,广泛应用于会议室、指挥中心、舞台演出、教育培训等场景。以下从产品特性、技术规格、应用场景及选型建议四个维度进行详细解析:一、核心产品与技术特性4K@60Hz超高清支持分辨率与刷新率:格芬科技矩阵产品(如GF-HDMI0404U、G
- HDMI高清矩阵与无缝拼接矩阵 OEM定制控标
geffen08
TPHD141Kvc-1g711es13
HDMI高清矩阵与无缝拼接矩阵:GEFFEN/GF-MIX系列介绍GEFFEN/GF-MIX系列矩阵是一款集成了高性能、高灵活性和高可靠性于一身的音视频处理设备,特别适用于需要高清视频信号切换、拼接和显示的场合。HDMI高清矩阵主要功能与特点:高清视频信号切换:GEFFEN/GF-MIX系列HDMI高清矩阵支持多路HDMI输入和多路HDMI输出,能够轻松实现高清视频信号之间的快速切换。无缝切换技术
- 无缝矩阵支持音频分离带画面分割功能的全面解析
geffen1688
分类分布式
一、技术原理与实现方式1. 音频分离技术核心功能:HDMI无缝矩阵通过硬件或软件实现音频加嵌与分离功能,支持多设备音频的独立处理与增强。实现方式:音频加嵌:将外部音频信号(如麦克风、调音台)嵌入HDMI信号中传输,适用于家庭影院、会议系统等场景。音频分离:将HDMI信号中的音频独立输出至外部设备(如音响、音频处理器),支持多通道数字音频的交叉切换。技术支撑:采用32bitARM核心芯片(
- MATLAB随机模拟技术在气候模型中的应用
本文还有配套的精品资源,点击获取简介:MATLAB是科学研究和工程领域中广泛使用的一款数学计算与编程软件,尤其在气象学和气候模拟方面有着重要的应用。’Fletcher_2019_Learning_Climate’项目通过MATLAB实现的随机模拟方法帮助理解气候变化。本文将详细探讨该项目的关键内容,包括气候模型的构成、随机过程与统计方法的运用、MATLAB编程技能、气候数据处理与分析、结果可视化以
- 深入解读MCP:构建低延迟、高吞吐量通信中间件
LCG元
MCP中间件
目录MCP核心架构设计MCP中间件架构图协议设计与消息格式MCP协议头结构消息体编码示例核心模块实现1.高性能网络层(基于Netty)2.零拷贝内存队列3.高效路由引擎4.消息持久化模块性能优化技巧1.批量合并写操作2.CPU缓存行优化3.内存池技术可靠性保障机制消息处理流程图实现代码:消息重试机制性能基准测试压测环境配置性能测试结果生产部署方案集群拓扑图部署脚本示例总结与最佳实践性能优化矩阵部署
- 人工智能怎么入门?零基础入门指南:从小白到AI实战者的第一步
OpenCV图像识别
人工智能人工智能计算机视觉自然语言处理神经网络机器学习
人工智能(AI)是当今最具前景的科技领域之一。从聊天机器人到自动驾驶,从图像识别到语音翻译,AI正在以前所未有的速度改变世界。但对于初学者来说,一个最常见的问题是:“我没有基础,也不是学数学或计算机的,人工智能还能学吗?我该怎么入门?”答案是:可以学,而且你并不孤单。越来越多的人正在以“跨专业、转行、自学”的方式进入AI领域。关键是,你需要一个清晰的入门路径,理解应该先做什么、学什么、避开什么误区
- Attention机制完全解析:从原理到ChatGPT实战
学废了wuwu
chatgpt
一、Attention的本质与计算步骤1.1核心思想动态聚焦:Attention是一种信息分配机制,让模型在处理输入时动态关注最重要的部分。类比:像人类阅读时用荧光笔标记关键句子。1.2计算三步曲(以"吃苹果"为例)Q(Query)、K(Key)、V(Value)的分工角色数学表示作用类比QW_q·输入向量主动提问者:表示当前需要关注什么好比"学生举手提问"KW_k·输入向量匹配者:提供被匹配的特
- 深层神经网络:原理与传播机制详解
网安spinage
深度学习神经网络人工智能机器学习深度学习
网络架构概述本文探讨的深层神经网络结构如下:输入层:3个神经元第一隐藏层:5个神经元第二隐藏层:5个神经元第三隐藏层:3个神经元输出层:1个神经元输出层隐藏层3隐藏层2隐藏层1输入层输出神经元3.1神经元3.2神经元3.3神经元2.1神经元2.2神经元2.3神经元2.4神经元2.5神经元1.1神经元1.2神经元1.3神经元1.4神经元1.5输入1输入2输入3数学符号定义符号含义维度XXX输入数据3
- 涨薪技术|Prometheus之PromQL操作符
川石课堂软件测试
prometheuspython数据库postman测试工具appium功能测试
使用PromQL除了能够方便的按照查询和过滤时间序列以外,PromQL还支持丰富的操作符,用户可以使用这些操作符对进一步的对事件序列进行二次加工。这些操作符包括:数学运算符,逻辑运算符,布尔运算符等等。01数学运算例如,我们可以通过指标node_memory_free_bytes_total获取当前主机可用的内存空间大小,其样本单位为Bytes。这是如果客户端要求使用MB作为单位响应数据,那只需要
- 蓝桥杯51单片机设计
#矩阵键盘#①IO线与关系思考,俩个引脚:一个输入高电平一个输入低电平,当俩者接到一起他们的点评情况是什么?单片机IO口内部等效图②矩阵键盘原理判断按键按下的原理:如果未按下时俩个引脚的电平不一样(一高一低),则按下时高电平的引脚为低电平,我们只需要检测高电平引脚是否变为低电平就可以判断按键是否被按下(总结:发生变化的总是高电平的引脚)③矩阵键盘逐行扫描法先让第一行按键的公共引脚为低电平,第二行到
- 329. 矩阵中的最长递增路径C语言
给定一个mxn整数矩阵matrix,找出其中最长递增路径的长度。对于每个单元格,你可以往上,下,左,右四个方向移动。你不能在对角线方向上移动或移动到边界外(即不允许环绕)。来源:力扣(LeetCode)链接:https://leetcode-cn.com/problems/longest-increasing-path-in-a-matrix著作权归领扣网络所有。商业转载请联系官方授权,非商业转载
- 力扣 329. 矩阵中的最长递增路径
乔碧萝·乔斯达
leetcode矩阵算法
跳转至矩阵中的最长递增路径https://leetcode-cn.com/problems/longest-increasing-path-in-a-matrix/题目给定一个mxn整数矩阵matrix,找出其中最长递增路径的长度。对于每个单元格,你可以往上,下,左,右四个方向移动。你不能在对角线方向上移动或移动到边界外(即不允许环绕)。示例1:输入:matrix=[[9,9,4],[6,6,8]
- 如何使用小红书矩阵系统:提升内容管理与发布的指南
小红书作为一个集社区分享与电商功能于一体的平台,吸引了大量的用户和创作者。随着内容创作和账号管理的复杂性增加,小红书矩阵系统成为了一个强大的工具,帮助用户提高效率和扩大影响力。本文将详细介绍如何使用小红书矩阵系统,以优化您的内容管理和发布策略。小红书矩阵系统简介小红书矩阵系统是一个集成解决方案,旨在帮助用户高效地管理多个账号、创作内容、安排发布计划,并通过智能工具提升用户体验。它通常包含以下核心功
- 小红书矩阵源码(多账号发布+批量剪辑视频+一键分发)
在数字化时代,社交媒体已成为品牌推广和个人表达的重要渠道。小红书作为国内领先的生活分享社区,其矩阵源码的出现,为多账号运营提供了前所未有的便利。本文将深入探讨小红书矩阵源码如何通过多账号发布、批量剪辑视频、一键分发以及持续迭代更新等功能,为用户带来革命性的运营体验。一、小红书矩阵源码:社交媒体运营的智能助手小红书矩阵源码是一个专为社交媒体运营设计的智能系统,它通过集成化的解决方案,帮助用户高效管理
- dp力扣 329. 矩阵中的最长递增路径
329.矩阵中的最长递增路径题目:链接https://leetcode.cn/problems/longest-increasing-path-in-a-matrix/代码:classSolution{public:structnode{inti;intj;intv;};staticboolcmp(nodex,nodey){returnx.vver;intlongestIncreasingPath
- 海外社媒营销:实现多账号矩阵与精准触达
在全球社交媒体用户突破50亿的当下,TikTok、Instagram、Facebook等平台已成为品牌触达海外消费者的核心战场。然而,随着平台风控升级与用户需求分化,海外社媒营销正面临两大核心挑战:多账号矩阵运营易被封禁(TikTok单月封禁超200万账号)、内容触达缺乏精准度(全球用户语言/文化/兴趣差异超300种)。亚矩阵云手机通过虚拟化环境隔离、AI行为模拟引擎、动态内容适配系统三大核心技术
- Python 领域 vllm 安装与环境配置全攻略
Python编程之道
Python编程之道python开发语言ai
Python领域vllm安装与环境配置全攻略关键词:Python、vllm、安装、环境配置、深度学习摘要:本文围绕Python领域中vllm的安装与环境配置展开,全面且深入地介绍了vllm的相关知识。首先阐述了背景信息,包括目的范围、预期读者、文档结构和术语表。接着详细讲解了vllm的核心概念与联系,分析其核心算法原理并给出具体操作步骤,还引入了相关数学模型和公式进行说明。通过项目实战,提供代码实
- [算法题解详细]DFS解力扣329矩阵中的最长递增路径
2401_84092508
程序员深度优先算法leetcode
输入:matrix=[[3,4,5],[3,2,6],[2,2,1]]输出:4解释:最长递增路径是[3,4,5,6]。注意不允许在对角线方向上移动。示例3输入:matrix=[[1]]输出:1提示m==matrix.lengthn==matrix[i].length1<=m,n<=2000<=matrix[i][j]<=2^31-1思路刚看到这题的时候我以为这题和岛屿最大面积这题差不多,但是提交了
- AIGC领域AI作画:在数字雕塑中的应用实践
AI原生应用开发
AI原生应用开发AIGCAI作画ai
AIGC领域AI作画:在数字雕塑中的应用实践关键词:AIGC、AI作画、数字雕塑、生成对抗网络、3D建模、艺术创作、深度学习摘要:本文深入探讨了AIGC(人工智能生成内容)技术在数字雕塑领域的创新应用。我们将从技术原理、算法实现到实际案例,全面解析AI如何赋能传统数字雕塑创作流程。文章首先介绍AIGC在艺术创作中的背景和发展现状,然后详细讲解核心算法原理和数学模型,接着通过实际项目案例展示AI作画
- 差分信号的测量方法【PINTECH品致】
Pintech+19902279403
网络
3.差分信号的测量方法目前差分信号的常见测量方法如下:1)使用两个探头测量,再利用示波器数学运算功能计算。使用探头进行两项单端测量,这是一种常用方法,也是进行差分测量最不希望的方法。测量到地的信号(单端)及使用示波器的数学运算函数(通道A信号减去通道B),就可测量差分信号。在信号时低频信号,信号幅度足够大,能够超过任何担心的噪声情况下,可以采取这种方法。两个单端测量组合在一起有多个潜在问题。其中一
- 【零基础学AI】第33讲:强化学习基础 - 游戏AI智能体
1989
0基础学AI人工智能游戏transformer分类深度学习神经网络
本节课你将学到理解强化学习的基本概念和框架掌握Q-learning算法原理使用Python实现贪吃蛇游戏AI训练能够自主玩游戏的智能体开始之前环境要求Python3.8+PyTorch2.0+Gymnasium(原OpenAIGym)NumPyMatplotlib推荐使用JupyterNotebook进行实验前置知识Python基础编程(第1-8讲)基本数学概念(函数、导数)神经网络基础(第23讲
- 青少年编程与数学 02-022 专业应用软件简介 20 法律专业软件:Westlaw
青少年编程与数学02-022专业应用软件简介20法律专业软件:Westlaw一、Westlaw法律专业软件概述(一)软件简介1.软件发展历程2.软件的主要特点(二)软件的应用领域1.法律研究2.法律实践3.法律教育二、Westlaw软件的功能模块(一)检索功能1.多种检索方式2.检索结果筛选与排序(二)法律研究工具1.KeyCite关键引用2.Headnotes判例摘要3.NotesofDecis
- 算法化资本——智能投顾技术重构金融生态的深度解析
田园Coder
人工智能科普人工智能科普
金融市场的数字化进程正经历着本质性跃迁。当传统交易大厅的开放式喊价被服务器集群的低频嗡鸣取代,当投资决策从人类直觉转向概率矩阵计算,一场由人工智能驱动的资本范式革命已悄然降临。智能投顾作为这场变革的核心载体,其技术架构不仅重塑财富管理的运作逻辑,更在认知层面挑战着金融市场的存在根基。理解这场变革的深度与广度,需要穿透技术表象,审视算法与资本结合引发的复杂生态嬗变。智能投顾系统的技术支柱建立于三重认
- 03 数据可视化的世界非常广阔,除了已提到的类型,还有许多更细分或前沿的可视化形式。
晨曦543210
信息可视化人工智能
十五、机器学习与数据科学专用图表特征重要性图(FeatureImportancePlot)用途:展示机器学习模型中各特征对预测结果的贡献度。示例:随机森林模型中影响房价预测的关键因素。混淆矩阵热力图(ConfusionMatrixHeatmap)用途:分类模型性能评估,显示预测结果与真实标签的对比。示例:疾病诊断模型的真阳性/假阳性分布。学习曲线(LearningCurve)用途:分析模型训练过程
- 项目中 枚举与注解的结合使用
飞翔的马甲
javaenumannotation
前言:版本兼容,一直是迭代开发头疼的事,最近新版本加上了支持新题型,如果新创建一份问卷包含了新题型,那旧版本客户端就不支持,如果新创建的问卷不包含新题型,那么新旧客户端都支持。这里面我们通过给问卷类型枚举增加自定义注解的方式完成。顺便巩固下枚举与注解。
一、枚举
1.在创建枚举类的时候,该类已继承java.lang.Enum类,所以自定义枚举类无法继承别的类,但可以实现接口。
- 【Scala十七】Scala核心十一:下划线_的用法
bit1129
scala
下划线_在Scala中广泛应用,_的基本含义是作为占位符使用。_在使用时是出问题非常多的地方,本文将不断完善_的使用场景以及所表达的含义
1. 在高阶函数中使用
scala> val list = List(-3,8,7,9)
list: List[Int] = List(-3, 8, 7, 9)
scala> list.filter(_ > 7)
r
- web缓存基础:术语、http报头和缓存策略
dalan_123
Web
对于很多人来说,去访问某一个站点,若是该站点能够提供智能化的内容缓存来提高用户体验,那么最终该站点的访问者将络绎不绝。缓存或者对之前的请求临时存储,是http协议实现中最核心的内容分发策略之一。分发路径中的组件均可以缓存内容来加速后续的请求,这是受控于对该内容所声明的缓存策略。接下来将讨web内容缓存策略的基本概念,具体包括如如何选择缓存策略以保证互联网范围内的缓存能够正确处理的您的内容,并谈论下
- crontab 问题
周凡杨
linuxcrontabunix
一: 0481-079 Reached a symbol that is not expected.
背景:
*/5 * * * * /usr/IBMIHS/rsync.sh
- 让tomcat支持2级域名共享session
g21121
session
tomcat默认情况下是不支持2级域名共享session的,所有有些情况下登陆后从主域名跳转到子域名会发生链接session不相同的情况,但是只需修改几处配置就可以了。
打开tomcat下conf下context.xml文件
找到Context标签,修改为如下内容
如果你的域名是www.test.com
<Context sessionCookiePath="/path&q
- web报表工具FineReport常用函数的用法总结(数学和三角函数)
老A不折腾
Webfinereport总结
ABS
ABS(number):返回指定数字的绝对值。绝对值是指没有正负符号的数值。
Number:需要求出绝对值的任意实数。
示例:
ABS(-1.5)等于1.5。
ABS(0)等于0。
ABS(2.5)等于2.5。
ACOS
ACOS(number):返回指定数值的反余弦值。反余弦值为一个角度,返回角度以弧度形式表示。
Number:需要返回角
- linux 启动java进程 sh文件
墙头上一根草
linuxshelljar
#!/bin/bash
#初始化服务器的进程PId变量
user_pid=0;
robot_pid=0;
loadlort_pid=0;
gateway_pid=0;
#########
#检查相关服务器是否启动成功
#说明:
#使用JDK自带的JPS命令及grep命令组合,准确查找pid
#jps 加 l 参数,表示显示java的完整包路径
#使用awk,分割出pid
- 我的spring学习笔记5-如何使用ApplicationContext替换BeanFactory
aijuans
Spring 3 系列
如何使用ApplicationContext替换BeanFactory?
package onlyfun.caterpillar.device;
import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.xml.XmlBeanFactory;
import
- Linux 内存使用方法详细解析
annan211
linux内存Linux内存解析
来源 http://blog.jobbole.com/45748/
我是一名程序员,那么我在这里以一个程序员的角度来讲解Linux内存的使用。
一提到内存管理,我们头脑中闪出的两个概念,就是虚拟内存,与物理内存。这两个概念主要来自于linux内核的支持。
Linux在内存管理上份为两级,一级是线性区,类似于00c73000-00c88000,对应于虚拟内存,它实际上不占用
- 数据库的单表查询常用命令及使用方法(-)
百合不是茶
oracle函数单表查询
创建数据库;
--建表
create table bloguser(username varchar2(20),userage number(10),usersex char(2));
创建bloguser表,里面有三个字段
&nbs
- 多线程基础知识
bijian1013
java多线程threadjava多线程
一.进程和线程
进程就是一个在内存中独立运行的程序,有自己的地址空间。如正在运行的写字板程序就是一个进程。
“多任务”:指操作系统能同时运行多个进程(程序)。如WINDOWS系统可以同时运行写字板程序、画图程序、WORD、Eclipse等。
线程:是进程内部单一的一个顺序控制流。
线程和进程
a. 每个进程都有独立的
- fastjson简单使用实例
bijian1013
fastjson
一.简介
阿里巴巴fastjson是一个Java语言编写的高性能功能完善的JSON库。它采用一种“假定有序快速匹配”的算法,把JSON Parse的性能提升到极致,是目前Java语言中最快的JSON库;包括“序列化”和“反序列化”两部分,它具备如下特征:  
- 【RPC框架Burlap】Spring集成Burlap
bit1129
spring
Burlap和Hessian同属于codehaus的RPC调用框架,但是Burlap已经几年不更新,所以Spring在4.0里已经将Burlap的支持置为Deprecated,所以在选择RPC框架时,不应该考虑Burlap了。
这篇文章还是记录下Burlap的用法吧,主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
 
- 【Mahout一】基于Mahout 命令参数含义
bit1129
Mahout
1. mahout seqdirectory
$ mahout seqdirectory
--input (-i) input Path to job input directory(原始文本文件).
--output (-o) output The directory pathna
- linux使用flock文件锁解决脚本重复执行问题
ronin47
linux lock 重复执行
linux的crontab命令,可以定时执行操作,最小周期是每分钟执行一次。关于crontab实现每秒执行可参考我之前的文章《linux crontab 实现每秒执行》现在有个问题,如果设定了任务每分钟执行一次,但有可能一分钟内任务并没有执行完成,这时系统会再执行任务。导致两个相同的任务在执行。
例如:
<?
//
test
.php
- java-74-数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
bylijinnan
java
public class OcuppyMoreThanHalf {
/**
* Q74 数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
* two solutions:
* 1.O(n)
* see <beauty of coding>--每次删除两个不同的数字,不改变数组的特性
* 2.O(nlogn)
* 排序。中间
- linux 系统相关命令
candiio
linux
系统参数
cat /proc/cpuinfo cpu相关参数
cat /proc/meminfo 内存相关参数
cat /proc/loadavg 负载情况
性能参数
1)top
M:按内存使用排序
P:按CPU占用排序
1:显示各CPU的使用情况
k:kill进程
o:更多排序规则
回车:刷新数据
2)ulimit
ulimit -a:显示本用户的系统限制参
- [经营与资产]保持独立性和稳定性对于软件开发的重要意义
comsci
软件开发
一个软件的架构从诞生到成熟,中间要经过很多次的修正和改造
如果在这个过程中,外界的其它行业的资本不断的介入这种软件架构的升级过程中
那么软件开发者原有的设计思想和开发路线
- 在CentOS5.5上编译OpenJDK6
Cwind
linuxOpenJDK
几番周折终于在自己的CentOS5.5上编译成功了OpenJDK6,将编译过程和遇到的问题作一简要记录,备查。
0. OpenJDK介绍
OpenJDK是Sun(现Oracle)公司发布的基于GPL许可的Java平台的实现。其优点:
1、它的核心代码与同时期Sun(-> Oracle)的产品版基本上是一样的,血统纯正,不用担心性能问题,也基本上没什么兼容性问题;(代码上最主要的差异是
- java乱码问题
dashuaifu
java乱码问题js中文乱码
swfupload上传文件参数值为中文传递到后台接收中文乱码 在js中用setPostParams({"tag" : encodeURI( document.getElementByIdx_x("filetag").value,"utf-8")});
然后在servlet中String t
- cygwin很多命令显示command not found的解决办法
dcj3sjt126com
cygwin
cygwin很多命令显示command not found的解决办法
修改cygwin.BAT文件如下
@echo off
D:
set CYGWIN=tty notitle glob
set PATH=%PATH%;d:\cygwin\bin;d:\cygwin\sbin;d:\cygwin\usr\bin;d:\cygwin\usr\sbin;d:\cygwin\us
- [介绍]从 Yii 1.1 升级
dcj3sjt126com
PHPyii2
2.0 版框架是完全重写的,在 1.1 和 2.0 两个版本之间存在相当多差异。因此从 1.1 版升级并不像小版本间的跨越那么简单,通过本指南你将会了解两个版本间主要的不同之处。
如果你之前没有用过 Yii 1.1,可以跳过本章,直接从"入门篇"开始读起。
请注意,Yii 2.0 引入了很多本章并没有涉及到的新功能。强烈建议你通读整部权威指南来了解所有新特性。这样有可能会发
- Linux SSH免登录配置总结
eksliang
ssh-keygenLinux SSH免登录认证Linux SSH互信
转载请出自出处:http://eksliang.iteye.com/blog/2187265 一、原理
我们使用ssh-keygen在ServerA上生成私钥跟公钥,将生成的公钥拷贝到远程机器ServerB上后,就可以使用ssh命令无需密码登录到另外一台机器ServerB上。
生成公钥与私钥有两种加密方式,第一种是
- 手势滑动销毁Activity
gundumw100
android
老是效仿ios,做android的真悲催!
有需求:需要手势滑动销毁一个Activity
怎么办尼?自己写?
不用~,网上先问一下百度。
结果:
http://blog.csdn.net/xiaanming/article/details/20934541
首先将你需要的Activity继承SwipeBackActivity,它会在你的布局根目录新增一层SwipeBackLay
- JavaScript变换表格边框颜色
ini
JavaScripthtmlWebhtml5css
效果查看:http://hovertree.com/texiao/js/2.htm代码如下,保存到HTML文件也可以查看效果:
<html>
<head>
<meta charset="utf-8">
<title>表格边框变换颜色代码-何问起</title>
</head>
<body&
- Kafka Rest : Confluent
kane_xie
kafkaRESTconfluent
最近拿到一个kafka rest的需求,但kafka暂时还没有提供rest api(应该是有在开发中,毕竟rest这么火),上网搜了一下,找到一个Confluent Platform,本文简单介绍一下安装。
这里插一句,给大家推荐一个九尾搜索,原名叫谷粉SOSO,不想fanqiang谷歌的可以用这个。以前在外企用谷歌用习惯了,出来之后用度娘搜技术问题,那匹配度简直感人。
环境声明:Ubu
- Calender不是单例
men4661273
单例Calender
在我们使用Calender的时候,使用过Calendar.getInstance()来获取一个日期类的对象,这种方式跟单例的获取方式一样,那么它到底是不是单例呢,如果是单例的话,一个对象修改内容之后,另外一个线程中的数据不久乱套了吗?从试验以及源码中可以得出,Calendar不是单例。
测试:
Calendar c1 =
- 线程内存和主内存之间联系
qifeifei
java thread
1, java多线程共享主内存中变量的时候,一共会经过几个阶段,
lock:将主内存中的变量锁定,为一个线程所独占。
unclock:将lock加的锁定解除,此时其它的线程可以有机会访问此变量。
read:将主内存中的变量值读到工作内存当中。
load:将read读取的值保存到工作内存中的变量副本中。
- schedule和scheduleAtFixedRate
tangqi609567707
javatimerschedule
原文地址:http://blog.csdn.net/weidan1121/article/details/527307
import java.util.Timer;import java.util.TimerTask;import java.util.Date;
/** * @author vincent */public class TimerTest {
 
- erlang 部署
wudixiaotie
erlang
1.如果在启动节点的时候报这个错 :
{"init terminating in do_boot",{'cannot load',elf_format,get_files}}
则需要在reltool.config中加入
{app, hipe, [{incl_cond, exclude}]},
2.当generate时,遇到:
ERROR