- AI浪潮下的数据保卫战:SSL证书为何成为企业刚需?
ssl证书
随着人工智能(AI)技术的迅猛发展,数据已成为企业最核心的资产之一。无论是训练AI模型、优化算法,还是提供个性化服务,数据的安全性和隐私保护都至关重要。然而,AI的广泛应用也带来了前所未有的安全挑战,尤其是在数据传输和存储过程中,如何防止数据泄露、篡改和窃取成为企业必须面对的问题。在这样的背景下,SSL证书作为网络安全的基础设施,正逐渐成为企业的“刚需”。1.AI时代的数据安全挑战数据量激增:AI
- python 支持向量机回归_深入浅出python机器学习---支持向量机SVM 笔记0114-2020
weixin_39864387
python支持向量机回归
题前故事:小D最近也交了一个女朋友,但是这个女孩好像非常情绪化,喜怒无常,让小D捉摸不透,小D女朋友的情绪完全不是“线性可分”的,于是小D想到了SVM算法,也就是大名鼎鼎的一一支持向量机。支持向量机理解引入首先需要知道线性可分和线性不可分的概念我们提取样本特征是“是否有妹子”和“是否有好吃的”这两项的时候,能够很容易用图中的直线把男生的情绪分成“开心”和“不开心”两类,这种情况下我们说样本是线性可
- 【人工智能】随机森林的智慧:集成学习的理论与实践
蒙娜丽宁
人工智能人工智能随机森林集成学习
随机森林(RandomForest)是一种强大的集成学习算法,通过构建多棵决策树并结合投票或平均预测提升模型性能。本文深入探讨了随机森林的理论基础,包括决策树的构建、Bagging方法和特征随机选择机制,并通过LaTeX公式推导其偏差-方差分解和误差分析。接着,我们详细描述了随机森林的算法流程,分析其在分类和回归任务中的适用性。文章还通过实验对比随机森林与单一决策树及其他算法(如SVM)的性能,探
- 大模型——Spring Boot 整合 Spring AI 实现项目接入ChatGPT
不二人生
大模型人工智能大模型
大模型——SpringBoot整合SpringAI实现项目接入ChatGPT随着人工智能技术的快速发展,越来越多的应用程序开始集成人工智能功能,以提供更智能、更个性化的体验。诸如ChatGPT等开放性大型语言模型的出现,使得自然语言处理和对话系统的开发变得更加容易和普及。这些技术已经在社交媒体、客户服务、教育等领域展现出巨大潜力,对于提升用户体验和提高工作效率至关重要。优势在之前,openai已经
- 深度学习在SSVEP信号分类中的应用分析
自由的晚风
深度学习分类人工智能
目录前言1.SSVEP信号分类的处理流程2.模型输入和数据预处理3.模型结构设计3.1卷积神经网络(CNN)3.2长短期记忆网络(LSTM)4.训练方法与激活函数5.性能评估与挑战6.未来方向前言随着脑机接口(BCI)技术的发展,SSVEP(稳态视觉诱发电位)因其高信息传输速率和短训练时间而成为最受欢迎的BCI范式之一。近年来,深度学习方法在SSVEP信号分类中取得了显著的成果。本文通过对31个深
- 大语言模型引擎全解析:Transformers、vLLM、Llama.cpp等,最佳选择全攻略!
大模型入门教程
语言模型llama人工智能DeepSeekpromptAI大模型大模型
近年来,大语言模型(LLMs)如GPT、LLaMA、BERT等已经成为人工智能领域的核心驱动力。然而,如何高效地运行和优化这些模型,成为了开发者和研究者面临的重要挑战。为此,一系列专为大语言模型设计的引擎应运而生。本文将带你深入了解Transformers、vLLM、Llama.cpp、SGLang、MLX和Ollama这些引擎,帮助你找到最适合的工具,释放大语言模型的全部潜力!作为技术人员,不仅
- PSPNet在图像超分辨率中的应用
AI天才研究院
AI大模型企业级应用开发实战AI大模型应用入门实战与进阶DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
PSPNet在图像超分辨率中的应用1.背景介绍图像超分辨率(ImageSuper-Resolution,ISR)是计算机视觉领域的一个重要研究方向,旨在从低分辨率图像中重建高分辨率图像。传统的ISR方法主要基于插值算法,如双线性插值、双三次插值等,但这些方法往往无法恢复图像的高频细节信息。近年来,随着深度学习的发展,基于卷积神经网络(ConvolutionalNeuralNetwork,CNN)的
- 基于BMO磁性细菌优化的WSN网络最优节点部署算法matlab仿真
软件算法开发
MATLAB程序开发#网络仿真matlabBMO磁性细菌优化WSN网络最优节点部署
目录1.程序功能描述2.测试软件版本以及运行结果展示3.核心程序4.本算法原理5.完整程序1.程序功能描述无线传感器网络(WirelessSensorNetwork,WSN)由大量分布式传感器节点组成,用于监测物理或环境状况。节点部署是WSN的关键问题,合理的部署可以提高网络的覆盖范围、连通性和能量效率。磁性细菌是一类能够感知地球磁场并沿磁场方向游动的微生物。在BMO算法中,模拟磁性细菌的这种趋磁
- 基于文本特征的微博谣言检测
机器懒得学习
人工智能大数据图像处理计算机视觉
随着社交媒体的普及,微博等平台成为了信息传播的重要渠道。然而,虚假信息和谣言的传播也带来了严重的社会问题。因此,自动化的谣言检测技术变得尤为重要。本文将介绍如何基于文本特征,使用深度学习模型(如LSTM、CNN)和传统机器学习模型(如SVM)来实现微博谣言检测,并对这些模型的性能进行比较。完整项目地址:基于文本特征的微博谣言检测1.项目概述本项目旨在通过分析微博文本内容,自动检测其中的谣言。系统通
- 基于机器学习的恶意软件检测系统的详细设计与实现
源码空间站11
机器学习人工智能课程设计python网络安全信息安全恶意软件检测
以下是一个基于机器学习的恶意软件检测系统的详细设计与实现,适合作为课程作业或项目开发。我们将实现一个通过机器学习模型分析恶意软件特征来检测文件是否为恶意软件的系统。总体思路数据准备:选择现有的恶意软件数据集(如Kaggle的恶意软件数据集)或构造模拟数据集。数据集中包含文件的特征(如二进制特征、字符串特征、API调用特征等)和标签("恶意"或"正常")。特征提取:提取文件的静态特征(如文件大小、字
- MATLAB控制函数测试要点剖析
蚂蚁质量
其他matlab深度学习
一、功能准确性检验基础功能核验针对常用控制函数,像用于传递函数建模的tf、构建状态空间模型的ss,以及开展阶跃响应分析的step等,必须确认其能精准执行基础操作。以tf函数为例,在输入分子与分母系数后,理应生成准确无误的传递函数模型;而运用step函数时,则应能够精准计算并绘制出系统的阶跃响应曲线,如实反映系统对阶跃输入的动态响应过程。复杂功能测试对于高级控制函数,例如线性二次调节器lqr、模型预
- 基于深度学习的恶意软件检测系统:设计与实现
机器懒得学习
深度学习人工智能
引言随着信息技术的飞速发展,恶意软件(如病毒、木马、勒索软件等)对全球网络安全构成了严重威胁。传统的恶意软件检测方法(如特征码匹配、行为分析等)在面对新型恶意软件变种时往往力不从心。近年来,深度学习技术在模式识别和分类任务中取得了显著成效,为恶意软件检测领域带来了新的机遇。本文将详细介绍一个基于深度学习的恶意软件检测系统的开发过程,该系统利用长短期记忆网络(LSTM)对Windows可执行程序的A
- 在MATLAB环境中,对矩阵拼接(Matrix Concatenation)的测试
蚂蚁质量
软件测试matlab矩阵
在MATLAB环境中,对矩阵拼接(MatrixConcatenation)的正确性与鲁棒性开展测试时,需要依据不同的拼接场景精心设计测试用例,全面验证矩阵维度、数据顺序、边界条件以及异常处理等关键方面。以下是详尽的测试方法与具体示例:基础功能测试(1)水平拼接([A,B]或horzcat)测试目的:确认在列方向进行拼接后,所得矩阵的尺寸是否准确无误,以及数据排列顺序是否符合预期。测试代码:matl
- AI Agent: AI的下一个风口 从图形用户界面到自然语言的进化
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AIAgent:AI的下一个风口从图形用户界面到自然语言的进化文章目录AIAgent:AI的下一个风口从图形用户界面到自然语言的进化1.背景介绍1.1人机交互的演变历程1.1.1命令行界面时代1.1.2图形用户界面时代1.1.3自然语言交互的兴起1.2AI技术的发展现状1.2.1机器学习和深度学习的突破1.2.2自然语言处理技术的进步1.2.3知识图谱和语义理解的发展1.3AIAgent的概念与意
- 基于PyTorch的深度学习4——使用numpy实现机器学习vs使用Tensor及Antograd实现机器学习
Wis4e
深度学习机器学习pytorch
首先,给出一个数组x,然后基于表达式y=3x2+2,加上一些噪音数据到达另一组数据y。然后,构建一个机器学习模型,学习表达式y=wx2+b的两个参数w、b。利用数组x,y的数据为训练数据。最后,采用梯度梯度下降法,通过多次迭代,学习到w、b的值。以下为具体步骤:1)导入需要的库。importnumpyasnp%matplotlibinlinefrommatplotlibimportpyplotas
- AI 大模型应用数据中心建设:数据中心成本优化
杭州大厂Java程序媛
DeepSeekR1&AI人工智能与大数据javapythonjavascriptkotlingolang架构人工智能
AI大模型应用数据中心建设:数据中心成本优化1.背景介绍在人工智能(AI)和大模型应用的快速发展中,数据中心(DataCenter)成为了一个至关重要的组成部分。无论是进行深度学习模型的训练,还是大模型应用的推理,数据中心都需要提供充足的计算资源、存储空间和网络带宽。随着AI模型和大数据量的增长,数据中心的建设和管理成本逐渐成为AI技术落地和应用的核心挑战之一。为了优化数据中心成本,同时保持高性能
- 深度学习-144-Text2SQL之基于langchain的少量样本提示词模板FewShotPromptTemplate的应用实战(三)
皮皮冰燃
深度学习深度学习langchainText2SQL
文章目录1基本组件1.1大模型1.2数据库Chinook1.2.1创建并载入数据1.2.2SQLDatabase2年龄最大的员工姓名和年龄3少量样本提示词模板3.1创建示例集3.2创建格式化程序3.3创建示例选择器3.4创建少量示例提示词模板3.5应用测试3.6添加新示例4参考附录1基本组件1.1大模型fromlangchain_ollamaimportChatOllamaimportosos.e
- Pytorch 第九回:卷积神经网络——ResNet模型
Start_Present
pytorchcnnpython分类深度学习
Pytorch第九回:卷积神经网络——ResNet模型本次开启深度学习第九回,基于Pytorch的ResNet卷积神经网络模型。这是分享的第四个卷积神经网络模型。该模型是基于解决因网络加深而出现的梯度消失和网络退化而进行设计的。接下来给大家分享具体思路。本次学习,借助的平台是PyCharm2024.1.3,python版本3.11numpy版本是1.26.4,pytorch版本2.0.0+cu11
- RoPE——Transformer 的旋转位置编码
机智的小神仙儿
深度学习大模型transformer深度学习人工智能
在自然语言处理领域,Transformer是现代深度学习模型的基础,而位置编码(PositionEmbedding)则是Transformer处理序列数据的关键模块之一。近年来,一种新型的位置编码方法RoPE(RotaryPositionEmbedding)得到了广泛关注。本文将全面解读RoPE的背景、原理、实现、优势及其应用场景,帮助读者深入理解这一方法。1.什么是RoPE?RoPE(Rotar
- 每天五分钟深度学习pytorch:基于Pytorch搭建ResNet模型的残差块
每天五分钟玩转人工智能
深度学习框架pytorch深度学习pytorch人工智能ResNet机器学习
残差块我们分析一下这个残差块,x经过两个卷积层得到F(x),然后F(x)+x作为残差块的输出,此时就有一个问题,这个问题就是F(x)+x的维度问题,如果图片数据经过两个卷积层之后F(x)变小(height和weight变小)或者通道数发生了变化,那么此时F(x)是没有办法和x相加的,当然我们可以学习前面的GoogLeNet的方式,也就是说卷积之后的F(x)和x一样,大小不变,或者对x变道和F(x)
- 信号处理应用:电力系统中的信号处理_(9).基于电力系统信号的数据挖掘技术
kkchenkx
信号处理技术仿真模拟信号处理数据挖掘人工智能
基于电力系统信号的数据挖掘技术1.引言电力系统中的信号处理是一个重要的研究领域,涉及电力系统的监测、故障诊断、状态评估等多个方面。随着大数据和人工智能技术的发展,数据挖掘技术在电力系统中的应用越来越广泛。本节将介绍如何利用数据挖掘技术对电力系统中的信号进行处理和分析,以提高系统的可靠性和效率。2.电力系统中的信号类型在电力系统中,信号可以分为多种类型,包括:电压信号:反映电力系统的电压水平,用于检
- Training-free Neural Architecture Searchthrough Variance of Knowledge of Deep Network Weights(预览版本)
境心镜
免训练深度学习人工智能NAS
代码位置摘要深度学习彻底改变了计算机视觉,但它使用深度网络架构取得了巨大的成功,而这些架构大多是手工制作的,因此可能不是最理想的。神经架构搜索(NAS)旨在通过遵循明确定义的优化范式来弥补这一差距,该范式系统地寻找最佳架构,给定客观标准,例如最大分类准确度。然而,NAS的主要限制是其天文数字般的计算成本,因为它通常需要从头开始训练每个候选网络架构。在本文中,我们旨在通过基于Fisher信息提出一种
- 智能教育:DeepSeek在课堂管理中的应用与代码实现
Evaporator Core
#DeepSeek快速入门系统架构设计师Python开发经验deepseek
课堂管理是教育领域的重要组成部分,它直接影响教学效果和学生的学习体验。随着人工智能技术的发展,DeepSeek正在通过其强大的算法和数据处理能力,推动课堂管理的智能化和高效化。本文将结合代码实现,深入探讨DeepSeek在课堂管理中的应用。一、智能课堂管理系统:从数据到实时监控智能课堂管理的核心在于通过实时监控学生的学习行为,提供及时的反馈和调整。DeepSeek通过深度学习算法,能够从课堂数据中
- CCF-GESP Python一级考试全解析:网络协议+编程技能双突破
奕澄羽邦
python网络协议开发语言
第一章CCF-GESP考试全景透视1.1认证体系权威性中国计算机学会(CCF)主办的GESP编程能力等级认证,是国内首个面向青少年的编程能力标准化评估体系。Python一级考试作为入门级认证,主要考察考生对计算机基础逻辑、编程工具使用及网络基础概念的掌握程度,证书受教育部认可,为后续人工智能、大数据等领域学习奠定基石。1.2考试内容三维度编程语言:Python语法基础(变量、循环、条件判断)、函数
- 基于PyTorch的深度学习5——神经网络工具箱
Wis4e
深度学习pytorch神经网络
可以学习如下内容:•介绍神经网络核心组件。•如何构建一个神经网络。•详细介绍如何构建一个神经网络。•如何使用nn模块中Module及functional。•如何选择优化器。•动态修改学习率参数。5.1核心组件神经网络核心组件不多,把这些组件确定后,这个神经网络基本就确定了。这些核心组件包括:1)层:神经网络的基本结构,将输入张量转换为输出张量。2)模型:层构成的网络。3)损失函数:参数学习的目标函
- 深入探讨如何在LangChain中将参数从一个步骤传递到下一个步骤:高级技巧与实际应用
m0_57781768
langchain
深入探讨如何在LangChain中将参数从一个步骤传递到下一个步骤:高级技巧与实际应用在现代软件开发中,特别是在复杂的自然语言处理(NLP)和人工智能应用中,数据的传递和处理是至关重要的。LangChainExpressionLanguage(LCEL)为开发者提供了一种强大的工具,能够有效地管理数据流,并确保任务链中的每一步都能顺利进行。在这些任务链中,开发者常常需要将数据从一个步骤无缝地传递到
- 如何成为LangChain项目的贡献者
eahba
langchaineasyui前端python
技术背景介绍LangChain是一个开源项目,致力于处理自然语言处理和生成任务。随着AI和机器学习领域的快速发展,LangChain项目的更新速度也很快。此项目欢迎社区的参与,无论是新功能、基础设施改进、文档提升还是Bug修复,都在积极寻求贡献。核心原则解析参与开源项目不仅能提升个人技能,还能为社区带来价值。对LangChain的贡献包括但不限于以下几个方面:文档改进:帮助改善项目文档,以便新人和
- ManusAl引发全球关注:通用AI代理新篇章
耶耶Norsea
网络杂烩人工智能
摘要近日,ManusAl合伙人张涛针对邀请码价格问题作出紧急回应。ManusAl作为首个通用AI代理,在全球范围内引起轰动,其性能超越了OpenAI的产品。ManusAl不仅是一个聊天机器人或工作流工具,它作为一个真正自主的主体,能够弥合概念与执行之间的差距。当其他AI还在生成想法时,ManusAl已经开始交付实际成果,代表了人机协作的新一代范式,让用户提前体验接近通用人工智能(AGI)的能力。关
- 深度学习-Android-图片加载框架-Glide-(二)-切入源码层深入分析-Glide-缓存策略
2401_84123077
程序员androidglide缓存
介绍在上一篇中,我们知道了Glide框架的最基本的执行流程,那么只知道基本执行流程,这显然是不够的,我们要深挖Glide框架的细节处理原理,比如缓存机制,图片处理等,这一篇我们就一起去探索Glide的缓存机制。Glide缓存机制可以说是设计的非常完美,考虑的非常周全,下面就以一张表格来说明下Glide缓存。缓存类型缓存代表说明活动缓存ActiveResources如果当前对应的图片资源是从内存缓存
- 【openAI库】Python语言openAI库详解:从入门到精通(从0到1手把手教程)
ChatGPT-千鑫
Python基础人工智能python开发语言人工智能gptAIGC机器学习
欢迎来到我的博客!很高兴能在这里与您相遇!首页:GPT-千鑫–热爱AI、热爱Python的天选打工人,活到老学到老!!!导航-人工智能系列:包含OpenAIAPIKey教程,50个Prompt指令,Midjourney生成攻略等更多教程…-常用开发工具:包含AI代码补全工具,Vscode-AI工具,IDERorPycharm-AI工具,获取OpenAIAPIKey的多种方式等更多教程…-VScod
- C/C++Win32编程基础详解视频下载
择善Zach
编程C++Win32
课题视频:C/C++Win32编程基础详解
视频知识:win32窗口的创建
windows事件机制
主讲:择善Uncle老师
学习交流群:386620625
验证码:625
--
- Guava Cache使用笔记
bylijinnan
javaguavacache
1.Guava Cache的get/getIfPresent方法当参数为null时会抛空指针异常
我刚开始使用时还以为Guava Cache跟HashMap一样,get(null)返回null。
实际上Guava整体设计思想就是拒绝null的,很多地方都会执行com.google.common.base.Preconditions.checkNotNull的检查。
2.Guava
- 解决ora-01652无法通过128(在temp表空间中)
0624chenhong
oracle
解决ora-01652无法通过128(在temp表空间中)扩展temp段的过程
一个sql语句后,大约花了10分钟,好不容易有一个结果,但是报了一个ora-01652错误,查阅了oracle的错误代码说明:意思是指temp表空间无法自动扩展temp段。这种问题一般有两种原因:一是临时表空间空间太小,二是不能自动扩展。
分析过程:
既然是temp表空间有问题,那当
- Struct在jsp标签
不懂事的小屁孩
struct
非UI标签介绍:
控制类标签:
1:程序流程控制标签 if elseif else
<s:if test="isUsed">
<span class="label label-success">True</span>
</
- 按对象属性排序
换个号韩国红果果
JavaScript对象排序
利用JavaScript进行对象排序,根据用户的年龄排序展示
<script>
var bob={
name;bob,
age:30
}
var peter={
name;peter,
age:30
}
var amy={
name;amy,
age:24
}
var mike={
name;mike,
age:29
}
var john={
- 大数据分析让个性化的客户体验不再遥远
蓝儿唯美
数据分析
顾客通过多种渠道制造大量数据,企业则热衷于利用这些信息来实现更为个性化的体验。
分析公司Gartner表示,高级分析会成为客户服务的关键,但是大数据分析的采用目前仅局限于不到一成的企业。 挑战在于企业还在努力适应结构化数据,疲于根据自身的客户关系管理(CRM)系统部署有效的分析框架,以及集成不同的内外部信息源。
然而,面对顾客通过数字技术参与而产生的快速变化的信息,企业需要及时作出反应。要想实
- java笔记4
a-john
java
操作符
1,使用java操作符
操作符接受一个或多个参数,并生成一个新值。参数的形式与普通的方法调用不用,但是效果是相同的。加号和一元的正号(+)、减号和一元的负号(-)、乘号(*)、除号(/)以及赋值号(=)的用法与其他编程语言类似。
操作符作用于操作数,生成一个新值。另外,有些操作符可能会改变操作数自身的
- 从裸机编程到嵌入式Linux编程思想的转变------分而治之:驱动和应用程序
aijuans
嵌入式学习
笔者学习嵌入式Linux也有一段时间了,很奇怪的是很多书讲驱动编程方面的知识,也有很多书将ARM9方面的知识,但是从以前51形式的(对寄存器直接操作,初始化芯片的功能模块)编程方法,和思维模式,变换为基于Linux操作系统编程,讲这个思想转变的书几乎没有,让初学者走了很多弯路,撞了很多难墙。
笔者因此写上自己的学习心得,希望能给和我一样转变
- 在springmvc中解决FastJson循环引用的问题
asialee
循环引用fastjson
我们先来看一个例子:
package com.elong.bms;
import java.io.OutputStream;
import java.util.HashMap;
import java.util.Map;
import co
- ArrayAdapter和SimpleAdapter技术总结
百合不是茶
androidSimpleAdapterArrayAdapter高级组件基础
ArrayAdapter比较简单,但它只能用于显示文字。而SimpleAdapter则有很强的扩展性,可以自定义出各种效果
ArrayAdapter;的数据可以是数组或者是队列
// 获得下拉框对象
AutoCompleteTextView textview = (AutoCompleteTextView) this
- 九封信
bijian1013
人生励志
有时候,莫名的心情不好,不想和任何人说话,只想一个人静静的发呆。有时候,想一个人躲起来脆弱,不愿别人看到自己的伤口。有时候,走过熟悉的街角,看到熟悉的背影,突然想起一个人的脸。有时候,发现自己一夜之间就长大了。 2014,写给人
- Linux下安装MySQL Web 管理工具phpMyAdmin
sunjing
PHPInstallphpMyAdmin
PHP http://php.net/
phpMyAdmin http://www.phpmyadmin.net
Error compiling PHP on CentOS x64
一、安装Apache
请参阅http://billben.iteye.com/admin/blogs/1985244
二、安装依赖包
sudo yum install gd
- 分布式系统理论
bit1129
分布式
FLP
One famous theory in distributed computing, known as FLP after the authors Fischer, Lynch, and Patterson, proved that in a distributed system with asynchronous communication and process crashes,
- ssh2整合(spring+struts2+hibernate)-附源码
白糖_
eclipsespringHibernatemysql项目管理
最近抽空又整理了一套ssh2框架,主要使用的技术如下:
spring做容器,管理了三层(dao,service,actioin)的对象
struts2实现与页面交互(MVC),自己做了一个异常拦截器,能拦截Action层抛出的异常
hibernate与数据库交互
BoneCp数据库连接池,据说比其它数据库连接池快20倍,仅仅是据说
MySql数据库
项目用eclipse
- treetable bug记录
braveCS
table
// 插入子节点删除再插入时不能正常显示。修改:
//不知改后有没有错,先做个备忘
Tree.prototype.removeNode = function(node) {
// Recursively remove all descendants of +node+
this.unloadBranch(node);
// Remove
- 编程之美-电话号码对应英语单词
bylijinnan
java算法编程之美
import java.util.Arrays;
public class NumberToWord {
/**
* 编程之美 电话号码对应英语单词
* 题目:
* 手机上的拨号盘,每个数字都对应一些字母,比如2对应ABC,3对应DEF.........,8对应TUV,9对应WXYZ,
* 要求对一段数字,输出其代表的所有可能的字母组合
- jquery ajax读书笔记
chengxuyuancsdn
jQuery ajax
1、jsp页面
<%@ page language="java" import="java.util.*" pageEncoding="GBK"%>
<%
String path = request.getContextPath();
String basePath = request.getScheme()
- JWFD工作流拓扑结构解析伪码描述算法
comsci
数据结构算法工作活动J#
对工作流拓扑结构解析感兴趣的朋友可以下载附件,或者下载JWFD的全部代码进行分析
/* 流程图拓扑结构解析伪码描述算法
public java.util.ArrayList DFS(String graphid, String stepid, int j)
- oracle I/O 从属进程
daizj
oracle
I/O 从属进程
I/O从属进程用于为不支持异步I/O的系统或设备模拟异步I/O.例如,磁带设备(相当慢)就不支持异步I/O.通过使用I/O 从属进程,可以让磁带机模仿通常只为磁盘驱动器提供的功能。就好像支持真正的异步I/O 一样,写设备的进程(调用者)会收集大量数据,并交由写入器写出。数据成功地写出时,写入器(此时写入器是I/O 从属进程,而不是操作系统)会通知原来的调用者,调用者则会
- 高级排序:希尔排序
dieslrae
希尔排序
public void shellSort(int[] array){
int limit = 1;
int temp;
int index;
while(limit <= array.length/3){
limit = limit * 3 + 1;
- 初二下学期难记忆单词
dcj3sjt126com
englishword
kitchen 厨房
cupboard 厨柜
salt 盐
sugar 糖
oil 油
fork 叉;餐叉
spoon 匙;调羹
chopsticks 筷子
cabbage 卷心菜;洋白菜
soup 汤
Italian 意大利的
Indian 印度的
workplace 工作场所
even 甚至;更
Italy 意大利
laugh 笑
m
- Go语言使用MySQL数据库进行增删改查
dcj3sjt126com
mysql
目前Internet上流行的网站构架方式是LAMP,其中的M即MySQL, 作为数据库,MySQL以免费、开源、使用方便为优势成为了很多Web开发的后端数据库存储引擎。MySQL驱动Go中支持MySQL的驱动目前比较多,有如下几种,有些是支持database/sql标准,而有些是采用了自己的实现接口,常用的有如下几种:
http://code.google.c...o-mysql-dri
- git命令
shuizhaosi888
git
---------------设置全局用户名:
git config --global user.name "HanShuliang" //设置用户名
git config --global user.email "13241153187@163.com" //设置邮箱
---------------查看环境配置
git config --li
- qemu-kvm 网络 nat模式 (四)
haoningabc
kvmqemu
qemu-ifup-NAT
#!/bin/bash
BRIDGE=virbr0
NETWORK=192.168.122.0
GATEWAY=192.168.122.1
NETMASK=255.255.255.0
DHCPRANGE=192.168.122.2,192.168.122.254
TFTPROOT=
BOOTP=
function check_bridge()
- 不要让未来的你,讨厌现在的自己
jingjing0907
生活 奋斗 工作 梦想
故事one
23岁,他大学毕业,放弃了父母安排的稳定工作,独闯京城,在家小公司混个小职位,工作还算顺手,月薪三千,混了混,混走了一年的光阴。 24岁,有了女朋友,从二环12人的集体宿舍搬到香山民居,一间平房,二人世界,爱爱爱。偶然约三朋四友,打扑克搓麻将,日子快乐似神仙; 25岁,出了几次差,调了两次岗,薪水涨了不过百,生猛狂飙的物价让现实血淋淋,无力为心爱银儿购件大牌
- 枚举类型详解
一路欢笑一路走
enum枚举详解enumsetenumMap
枚举类型详解
一.Enum详解
1.1枚举类型的介绍
JDK1.5加入了一个全新的类型的”类”—枚举类型,为此JDK1.5引入了一个新的关键字enum,我们可以这样定义一个枚举类型。
Demo:一个最简单的枚举类
public enum ColorType {
RED
- 第11章 动画效果(上)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Eclipse中jsp、js文件编辑时,卡死现象解决汇总
ljf_home
eclipsejsp卡死js卡死
使用Eclipse编辑jsp、js文件时,经常出现卡死现象,在网上百度了N次,经过N次优化调整后,卡死现象逐步好转,具体那个方法起到作用,不太好讲。将所有用过的方法罗列如下:
1、取消验证
windows–>perferences–>validation
把 除了manual 下面的全部点掉,build下只留 classpath dependency Valida
- MySQL编程中的6个重要的实用技巧
tomcat_oracle
mysql
每一行命令都是用分号(;)作为结束
对于MySQL,第一件你必须牢记的是它的每一行命令都是用分号(;)作为结束的,但当一行MySQL被插入在PHP代码中时,最好把后面的分号省略掉,例如:
mysql_query("INSERT INTO tablename(first_name,last_name)VALUES('$first_name',$last_name')");
- zoj 3820 Building Fire Stations(二分+bfs)
阿尔萨斯
Build
题目链接:zoj 3820 Building Fire Stations
题目大意:给定一棵树,选取两个建立加油站,问说所有点距离加油站距离的最大值的最小值是多少,并且任意输出一种建立加油站的方式。
解题思路:二分距离判断,判断函数的复杂度是o(n),这样的复杂度应该是o(nlogn),即使常数系数偏大,但是居然跑了4.5s,也是醉了。 判断函数里面做了3次bfs,但是每次bfs节点最多