数据集的准备
# 导入所需库
import hashlib
import os
import tarfile
import zipfile
import requests
# 设置下载路径
DATA_HUB = dict()
DATA_URL = 'http://d2l-data.s3-accelerate.amazonaws.com/'
# 下载函数
def download(name, cache_dir=os.path.join('..', 'data')): #@save
"""下载一个DATA_HUB中的文件,返回本地文件名"""
assert name in DATA_HUB, f"{name} 不存在于 {DATA_HUB}"
url, sha1_hash = DATA_HUB[name]
os.makedirs(cache_dir, exist_ok=True)
fname = os.path.join(cache_dir, url.split('/')[-1])
if os.path.exists(fname):
sha1 = hashlib.sha1()
with open(fname, 'rb') as f:
while True:
data = f.read(1048576)
if not data:
break
sha1.update(data)
if sha1.hexdigest() == sha1_hash:
return fname # 命中缓存
print(f'正在从{url}下载{fname}...')
r = requests.get(url, stream=True, verify=True)
with open(fname, 'wb') as f:
f.write(r.content)
return fname
# 解压函数
def download_extract(name, folder=None): #@save
"""下载并解压zip/tar文件"""
fname = download(name)
base_dir = os.path.dirname(fname)
data_dir, ext = os.path.splitext(fname)
if ext == '.zip':
fp = zipfile.ZipFile(fname, 'r')
elif ext in ('.tar', '.gz'):
fp = tarfile.open(fname, 'r')
else:
assert False, '只有zip/tar文件可以被解压缩'
fp.extractall(base_dir)
return os.path.join(base_dir, folder) if folder else data_dir
def download_all(): #@save
"""下载DATA_HUB中的所有文件"""
for name in DATA_HUB:
download(name)
# 导入预处理所需的包
%matplotlib inline
import numpy as np
import pandas as pd
import torch
from torch import nn
from d2l import torch as d2l
# 将对应数据集注册成指定的命名
# 实际Kaggle数据集到特定项目页面下载即可
DATA_HUB['kaggle_house_train'] = ( #@save
DATA_URL + 'kaggle_house_pred_train.csv',
'585e9cc93e70b39160e7921475f9bcd7d31219ce')
DATA_HUB['kaggle_house_test'] = ( #@save
DATA_URL + 'kaggle_house_pred_test.csv',
'fa19780a7b011d9b009e8bff8e99922a8ee2eb90')
# 分别下载测试集和训练集
train_data = pd.read_csv(download('kaggle_house_train'))
test_data = pd.read_csv(download('kaggle_house_test'))
# 查看训练集和测试集的尺寸
train_data.shape,test_data.shape
# 查看训练集的开头四列和最后三列
train_data.iloc[0:4,[0,1,2,3,-3,-2,-1]]
数据中的Id列只是数据的编号,属于无用特征,于是在测试和训练集中去掉该列,并将两个集合合并为所有特征。
all_features = pd.concat((train_data.iloc[:,1:-1],test_data.iloc[:,1:]))
all_features.shape
数据集的预处理
1.数据中的缺失项补充
numeric_features = all_features.dtypes[all_features.dtype
all_features[numeric_features] =all.features[numeric_features].apply(lambda x:(x-x.mean())/(x.std()))
# 通过将特征重新缩放到零均值和单位方差来标准化数据
all_features[numeric_features] = all_features[numeric_features].fillna(0)
# 补充NA项
all_features = pd.get_dummies(all_features,dummy_na = True)
all_features.shape
# get_dummies():将分类变量转换为虚拟/指标变量。
2.将数据转化为张量格式
n_train = train_data.shape[0]
train_features = torch.tensor(all_features[:n_train].values,dtype = torch.float32)
test_features = torch.tensor(all_features[n_train:].values,dtype = torch.float32)
train_labels = torch.tensor(train_data.SalePrice.values.reshape(-1,1),dtype=torch.float32)
损失函数和网络
loss = nn.MSELoss()
in_features = train_features.shape[1]
def get_net():
net = nn.Sequential(nn.Linear(in_features,10),nn.ReLU(),nn.Linear(10,1))
return net
# 降低房价误差大对模型的影响,即房价高的房子,预测值和实际值误差肯定比房价低的高,从而导致房价高的房子的权重更高。
# 于是考虑将误差转为百分比表示,真实值-预测值/真实值
def log_rmse(net, features, labels):
# 为了在取对数时进一步稳定该值,将小于1的值设置为1
clipped_preds = torch.clamp(net(features), 1, float('inf'))
# torch.clamp将元素值压缩到1到无穷,这样做log都是正数,计算预测值的log与实际值的log的损失
rmse = torch.sqrt(loss(torch.log(clipped_preds),
torch.log(labels)))
return rmse.item()
训练网络
def train(net, train_features, train_labels, test_features, test_labels,
num_epochs, learning_rate, weight_decay, batch_size):
train_ls, test_ls = [], []
train_iter = d2l.load_array((train_features, train_labels), batch_size)
# 这里使用的是Adam优化算法
optimizer = torch.optim.Adam(net.parameters(),
lr = learning_rate,
weight_decay = weight_decay)
for epoch in range(num_epochs):
for X, y in train_iter:
optimizer.zero_grad()
l = loss(net(X), y)
l.backward()
optimizer.step()
train_ls.append(log_rmse(net, train_features, train_labels))
if test_labels is not None:
test_ls.append(log_rmse(net, test_features, test_labels))
return train_ls, test_ls
交叉验证
# K折交叉验证
# 交叉验证既可以解决数据集的数据量不够大问题,也可以解决参数调优的问题
def get_k_fold_data(k, i, X, y):
# i:当前第几折
# k肯定大于1,小于则报错
assert k > 1
# “//”是一个算术运算符,表示整数除法,它可以返回商的整数部分(向下取整)。
# 不管分为几折和测试数据有多少个,都不会出现小数
fold_size = X.shape[0] // k
X_train, y_train = None, None
for j in range(k):
idx = slice(j*fold_size,(j+1)*fold_size)
X_part, y_part = X[idx, :], y[idx]
if j == i:
# 当前折扣和i相等,则表明到了验证集部分,设定验证集
X_valid, y_valid = X_part, y_part
# train是None,说明还未赋值过,则将分割的赋值
elif X_train is None:
X_train, y_train = X_part, y_part
# 否则将train和part合并
else:
X_train = torch.cat([X_train, X_part], 0)
y_train = torch.cat([y_train, y_part], 0)
return X_train, y_train, X_valid, y_valid
# 在K折交叉验证中训练次后,返回训练和验证误差的平均值。
def k_fold(k, X_train, y_train, num_epochs, learning_rate, weight_decay,
batch_size):
train_l_sum, valid_l_sum = 0, 0
for i in range(k):
data = get_k_fold_data(k, i, X_train, y_train)
net = get_net()
train_ls, valid_ls = train(net, *data, num_epochs, learning_rate,
weight_decay, batch_size)
train_l_sum += train_ls[-1]
valid_l_sum += valid_ls[-1]
if i == 0:
d2l.plot(list(range(1, num_epochs + 1)), [train_ls, valid_ls],
xlabel='epoch', ylabel='rmse', xlim=[1, num_epochs],
legend=['train', 'valid'], yscale='log')
print(f'折{i + 1},训练log rmse{float(train_ls[-1]):f}, '
f'验证log rmse{float(valid_ls[-1]):f}')
return train_l_sum / k, valid_l_sum / k
# 提交预测结果
def train_and_pred(train_features, test_features, train_labels, test_data,
num_epochs, lr, weight_decay, batch_size):
net = get_net()
train_ls, _ = train(net, train_features, train_labels, None, None,
num_epochs, lr, weight_decay, batch_size)
d2l.plot(np.arange(1, num_epochs + 1), [train_ls], xlabel='epoch',
ylabel='log rmse', xlim=[1, num_epochs], yscale='log')
print(f'训练log rmse:{float(train_ls[-1]):f}')
# 将网络应用于测试集。
preds = net(test_features).detach().numpy()
# 将其重新格式化以导出到Kaggle
test_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0])
submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis=1)
submission.to_csv('submission.csv', index=False)
train_and_pred(train_features, test_features, train_labels, test_data,
num_epochs, lr, weight_decay, batch_size)