- 从零开始大模型开发与微调:PyCharm的下载与安装
AI天才研究院
AI大模型企业级应用开发实战AI大模型应用入门实战与进阶DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
从零开始大模型开发与微调:PyCharm的下载与安装1.背景介绍随着人工智能和深度学习技术的不断发展,大型语言模型(LargeLanguageModels,LLMs)已经成为当前最引人注目的研究热点之一。LLMs能够在各种自然语言处理任务上展现出惊人的性能,例如机器翻译、文本生成、问答系统等。PyTorch和TensorFlow等深度学习框架为训练和微调大型语言模型提供了强大的支持。PyCharm
- PyTorch从入门到精通:探索深度学习新境界
lmtealily
深度学习pytorch人工智能
引言PyTorch作为当前最受欢迎的深度学习框架之一,凭借其动态计算图的独特设计和与Python生态的无缝集成,正重塑着人工智能开发的新范式1。从NVIDIA的研究实践到Meta的产业应用,PyTorch的价值已渗透至学术研究、工业部署的每个角落。本文将带领您从张量操作基础开始,逐步探索GPU加速、动态图机制、框架生态集成等高级主题,最终实现理论与实战的双重突破。一、PyTorch核心基础构建1.
- 2025版自动控制流程_工业级连接_智能重连监控系统_增强型工业连接协议 ‘s Vision+Robot EPSON
资深设备全生命周期管理
python
importtimeimporttkinterastkfromtkinterimportmessageboxfromPILimportImage,ImageTkimportsocketimportthreadingfromdatetimeimportdatetimeimportloggingimportsubprocess#确保导入subprocess库importosimportpyautogu
- 如何测试模型的推理速度
想要躺平的一枚
AI图像算法计算机视觉
前言模型的推理速度测试有两种方式:一种是使用python的时间戳time函数来记录,另一种是使用Pytorch里的Event。同时,在进行GPU测试时,为减少冷启动的状态影响,可以先进行预热。代码如下(示例):if__name__=="__main__":model=BiSeNet(backbone='STDCNet813',n_classes=2,export=True)model.cuda()
- Vision Transformer (ViT) 详细描述及 PyTorch 代码全解析
AIGC_ZY
CVtransformerpytorch深度学习
VisionTransformer(ViT)是一种将Transformer架构应用于图像分类任务的模型。它摒弃了传统卷积神经网络(CNN)的卷积操作,而是将图像分割成patches,并将这些patches视为序列输入到Transformer编码器中。ViT的处理流程输入图像被分割成多个固定大小的patch,每个patch经过线性投影变成嵌入向量,然后加上位置编码。接着,这些嵌入向量会和类别标签(c
- PyTorch 环境搭建全攻略:CUDA/cuDNN 配置与多版本管理技巧
小诸葛IT课堂
pytorch人工智能python
一、环境搭建前的准备工作1.硬件兼容性检测#检查NVIDIAGPU型号nvidia-smi#验证CUDA支持的ComputeCapabilitylspci|grep-invidia#查看CUDA版本兼容性矩阵https://developer.nvidia.com/cuda-gpus2.系统环境要求组件推荐配置最低要求操作系统Ubuntu20.04LTSWindows10/11显卡驱动NVIDIA
- PyTorch 实现 Conditional DCGAN(条件深度卷积生成对抗网络)进行图像到图像转换的示例代码
max500600
算法pythonYOLO深度学习人工智能
以下是一个使用PyTorch实现ConditionalDCGAN(条件深度卷积生成对抗网络)进行图像到图像转换的示例代码。该代码包含训练和可视化部分,假设输入为图片和4个工艺参数,根据这些输入生成相应的图片。1.导入必要的库importtorchimporttorch.nnasnnimporttorch.optimasoptimimporttorchvisionimporttorchvision.
- 【模块化编程】数据标签 转 独热编码
十二月的猫
pytorch人工智能科研与代码
个人主页:十二月的猫-CSDN博客系列专栏:《PyTorch科研加速指南:即插即用式模块开发》-CSDN博客十二月的寒冬阻挡不了春天的脚步,十二点的黑夜遮蔽不住黎明的曙光目录1.前言2.标签转独热编码函数2.1完整函数2.2函数功能解释3.实战示例4.总结1.前言《Python/PyTorch极简课》专栏持续更新中,未来最少文章数量为100篇。由于专栏刚刚建立,目前免费,后续将慢慢恢复原价至99.
- vscode--工作区和相对路径
一头大学牲
程序--编程记录vscodeide编辑器
vscode的相对路径使用vscode编辑python项目时发现,它的相对路径是相对于当前工作根目录来定位的,也就是从工作文件夹的最顶级目录开始查找,而非是从当前执行文件开始查找。例子:根目录:F:\deep-learning-for-image-processing执行文件路径:F:\deep-learning-for-image-processing\pytorch_classificatio
- linux系统安全
IT小饕餮
linux基础linux系统安全运维
管理终端登录[root@localhost~]#grep"/sbin/nologin$"/etc/passwd表示禁止终端登录,应确保不被人改动输出结果:bin:x:1:1:bin:/bin:/sbin/nologindaemon:x:2:2:daemon:/sbin:/sbin/nologinadm:x:3:4:adm:/var/adm:/sbin/nologinlp:x:4:7:lp:/var
- 3.13.0 python 配置tensorflow(CPU版本)
m0_Gattuso
tensorflow人工智能python
condacreate--nametestpython=3.12activatetestpipinstalltensorflow上面3步骤在condaprompt里完成退出时记得condadeactivate来源:Windows下tensorflow/pytorch环境配置_pycharm怎么配置tensorflow环境-CSDN博客然后问题出现了:condaenvironment里什么都没有,理
- 热门AI创作助手推荐【第一期】
量子星澜
文心一言AI写作chatgpt
星游AI创作助手人工智能在现代科技中的应用非常广泛,涵盖了诸多领域,包括但不限于以下几个方面:1.语音识别和自然语言处理:人工智能技术被广泛应用于语音识别和自然语言处理领域,例如智能助手、翻译系统、语音交互系统等。2.机器学习和数据分析:人工智能的机器学习算法被用于数据分析、预测建模、用户个性化推荐等领域,帮助企业做出更准确的商业决策。3.计算机视觉:人工智能在计算机视觉领域的应用包括图像识别、视
- 【NLP】 3. Distributional Similarity in NLP(分布式相似性)
pen-ai
NLP机器学习自然语言处理分布式人工智能
DistributionalSimilarityinNLP(分布式相似性)分布式相似性(DistributionalSimilarity)是自然语言处理(NLP)中的核心概念,基于“相似的单词出现在相似的上下文中”这一假设。它用于衡量单词之间的相似性,广泛应用于词向量、信息检索、文本分类等任务。1.分布式假设(DistributionalHypothesis)分布式相似性基于以下假设:“Yoush
- 【解锁机器学习:探寻数学基石】
游戏乐趣
机器学习人工智能
机器学习中的数学基础探秘在当今数字化时代,机器学习无疑是最具影响力和发展潜力的技术领域之一。从图像识别到自然语言处理,从智能推荐系统到自动驾驶,机器学习的应用无处不在,深刻地改变着我们的生活和工作方式。然而,在这看似神奇的机器学习背后,数学作为其坚实的理论基础,起着不可或缺的关键作用。毫不夸张地说,数学是打开机器学习大门的钥匙,是理解和掌握机器学习算法与模型的核心所在。想象一下,机器学习就像是一座
- uni-app选择图片进行覆盖然后分享或打印
MandiGao
uni-appuni-app前端javascript
需求:APP上传手机原有的图片,进行覆盖指定的部分,覆盖完成后,唤起原生系统的分享面板,面板上有分享给其他人,还有打印选项准备一个canvas和button标签选择图片这个canvas主要是把选择的图片画上去,所以不知道选的是哪张图片,当然也不知道宽高是多少,所以用的是动态的宽高,这个宽高一定要设置!!!完成事件//选择图片进行裁剪clipImg(){uni.chooseImage({count:
- 【NLP】 9. 处理创造性词汇 & 词组特征(Creative Words & Features Model), 词袋模型处理未知词,模型得分
pen-ai
NLP机器学习自然语言处理人工智能深度学习
这里写目录标题处理创造性词汇&词组特征(CreativeWords&FeaturesModel)1.处理否定(NegationHandling)2.词组特征(Bigrams&N-grams)3.结合否定传播与n-grams进行优化词袋模型(Bag-of-Words,BoW)1.BoW示例2.处理未知词3.为什么忽略未知词?4.处理未知词的方法计算模型得分(ScoreCalculation)处理创造
- 【NLP】 5. Word Analogy Task(词类比任务)与 Intrinsic Metric(内在度量)
pen-ai
NLP机器学习自然语言处理word人工智能
WordAnalogyTask(词类比任务)定义:WordAnalogyTask是用于评估词向量质量的内在指标(IntrinsicMetric)。该任务基于这样的假设:如果词向量能够捕捉单词之间的语义关系,那么这些关系应该能够在向量空间中保持一定的结构。示例:在一个理想的词向量空间中,单词之间的关系应该满足如下等式:king−man+woman≈queenking−man+woman≈queenk
- 离线安装Docker 镜像
。。。
docker容器运维
要在没有网络连接的环境中使用Docker安装镜像,你需要提前下载镜像文件,并通过某种方式将其传输到目标机器上。以下是步骤和示例代码:在有网络连接的机器上,下载Docker镜像:dockerpull[IMAGE_NAME]:[TAG]保存镜像为tar文件:dockersave-o[PATH_TO_SAVE]/[IMAGE_NAME].[TAG].tar[IMAGE_NAME]:[TAG]将tar文件
- torch-torchvision-python版本对应问题
Thirtyaoe
python深度学习pytorch
module‘torch.onnx.symbolic_helper’hasnoattribute‘quantized_args’今日在联系pytorch时,importtorchvision时报错:module‘torch.onnx.symbolic_helper’hasnoattribute‘quantized_args’查阅后发现是版本不兼容的问题,于是查看了正确的对应版本,对自己的进行修改。
- torchvision与torch的版本冲突
RanGriffin
pythonpytorch
在importtorchvision时报错:UserWarning:FailedtoloadimagePythonextension:[WinError127]解决在晚上查询之后,问题在于自己的torchvision版本与torch版本不对应。首先查询自己的torch和torchvision版本importtorchprint(torch.__version__)importtorchvision
- 大规模语言模型从理论到实践 开源指令数据集
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大规模语言模型从理论到实践开源指令数据集1.背景介绍大规模语言模型(LargeLanguageModels,LLMs)近年来在自然语言处理(NLP)领域取得了显著的进展。诸如GPT-3、BERT等模型在各种任务中表现出色,从文本生成到翻译,再到问答系统,几乎无所不能。这些模型的成功离不开庞大的训练数据集和复杂的算法架构。然而,如何有效地构建和利用开源指令数据集,仍然是一个值得深入探讨的话题。2.核
- 警告 torch.nn.utils.weight_norm is deprecate 的参考解决方法
wongHome
深度学习相关调试问题Ubuntupytorch
文章目录写在前面一、问题描述二、解决方法参考链接写在前面自己的测试环境:Ubuntu20.04一、问题描述运行pytorch程序,如下如下警告/home/wong/ProgramFiles/anaconda3/envs/pytorch_env/lib/python3.8/site-packages/torch/nn/utils/weight_norm.py:30:UserWarning:torch
- 使用Python和LangChain创建可调用工具的智能对话机器人:全面指南
m0_57781768
pythonlangchain机器人
使用Python和LangChain创建可调用工具的智能对话机器人:全面指南在当今技术迅猛发展的时代,人工智能(AI)和自然语言处理(NLP)技术的应用范围越来越广。尤其是对话机器人,它们不仅能与人类进行自然交互,还能通过调用外部API与各种系统对接,为用户提供更加智能和灵活的服务。本文将通过一系列实例和代码演示,向您展示如何利用Python编程语言和LangChain框架,创建能够使用外部工具(
- docker基础
黄小耶@
Pythonweb开发linuxdocker
docker基础一、镜像命令1、镜像检索dockersearchnginx2、镜像下载dockerpullnginx3、镜像查询列表dockerimages4、删除镜像dockerrmi二、容器命令1、运行容器dockerrun应用名dockerrun-d应用名#后台运行dockerrun--name应用名#取别名dockerrun-p80:80应用名#端口映射2、查看运行中的容器dockerps
- YOLO11 环境安装
你喜欢喝可乐吗?
condadeeplearning人工智能conda
1.安装Anaconda/Miniconda在Ubuntu中安装MinicondaAnaconda/Minicondapip配置清华镜像源Anaconda/Miniconda基本操作命令2.创建python虚拟环境#创建condacreate-nyolo11_envpython=3.12#激活condaactivateyolo11_env3.安装pytorch#Pytorchhttps://pyt
- 【项目实战】前后端分离实现通用上传接口到不同存储桶
本本本添哥
001-基础开发能力javaservlet前端
一、定义通用上传接口通过上传接口(UploadFileController.java)上传文件/***上传文件*@parammulFile*@paramdir文件存放目录*@paramfileType文件类型image:图片*@return*/@ApiOperation(value="上传文件")@PostMapping("/upload")public
- html-to-image的使用及图片变形和无图问题修复
庸懒
前端
html-to-image的使用及图片变形和无图问题修复最近迭代的时候因为新增了一个需求,需要前端提供素材及样式给后端,后端同步渲染,但是因为部分样式问题后端无法实现所以决定前端将页面生成图片然后传递给后端使用,本文记录一下使用的过程及遇到的部分问题。技术调研现在将页面元素转换成图片的插件有很多,普遍使用的技术原理都是利用canvas或者SVG将页面元素转换成画布或者svg元素,然后再转成图片。这
- Python 在人工智能领域的实际6大案例
Solomon_肖哥弹架构
人工智能机器学习python
Python作为一种功能强大且易于学习的编程语言,在人工智能(AI)领域得到了广泛的应用。从机器学习到深度学习,从自然语言处理到计算机视觉,Python提供了丰富的库和框架,使得开发者能够快速实现各种AI应用。本文将通过多个实际案例,展示Python在人工智能领域的强大功能和应用前景。二、案例一:手写数字识别(MNIST)1.背景介绍手写数字识别是机器学习领域的经典入门项目,MNIST数据集包含了
- 如何用deepseek炒股
Real Man★
python机器学习人工智能
使用DeepSeek进行炒股的核心思路是利用其强大的数据处理和预测能力,辅助投资决策。以下是具体的应用方法和步骤:一、数据收集与处理获取市场数据股票数据:通过API(如Tushare、YahooFinance)获取历史股价、成交量、财务数据等。新闻与舆情:使用DeepSeek的NLP能力分析新闻、社交媒体和公告,提取市场情绪和事件影响。宏观经济数据:收集GDP、利率、通胀等数据,分析其对股市的影响
- 【基于PyTorch】多项式贝叶斯分类器实现中文文本情感分类任务
鱼弦
机器学习设计类系统pytorch分类人工智能
多项式贝叶斯分类器实现中文文本情感分类任务介绍多项式朴素贝叶斯(MultinomialNaiveBayes,MultinomialNB)是一种常用于文本分类的算法,特别适用于多类别文本分类。其在处理离散数据(如文本数据中的词频)时表现优异,可以用于情感分析、垃圾邮件检测等任务。应用使用场景情感分析:识别用户评论的情感,例如正面评论和负面评论。垃圾邮件检测:鉴别电子邮件是否为垃圾邮件。新闻分类:将新
- 多线程编程之卫生间
周凡杨
java并发卫生间线程厕所
如大家所知,火车上车厢的卫生间很小,每次只能容纳一个人,一个车厢只有一个卫生间,这个卫生间会被多个人同时使用,在实际使用时,当一个人进入卫生间时则会把卫生间锁上,等出来时打开门,下一个人进去把门锁上,如果有一个人在卫生间内部则别人的人发现门是锁的则只能在外面等待。问题分析:首先问题中有两个实体,一个是人,一个是厕所,所以设计程序时就可以设计两个类。人是多数的,厕所只有一个(暂且模拟的是一个车厢)。
- How to Install GUI to Centos Minimal
sunjing
linuxInstallDesktopGUI
http://www.namhuy.net/475/how-to-install-gui-to-centos-minimal.html
I have centos 6.3 minimal running as web server. I’m looking to install gui to my server to vnc to my server. You can insta
- Shell 函数
daizj
shell函数
Shell 函数
linux shell 可以用户定义函数,然后在shell脚本中可以随便调用。
shell中函数的定义格式如下:
[function] funname [()]{
action;
[return int;]
}
说明:
1、可以带function fun() 定义,也可以直接fun() 定义,不带任何参数。
2、参数返回
- Linux服务器新手操作之一
周凡杨
Linux 简单 操作
1.whoami
当一个用户登录Linux系统之后,也许他想知道自己是发哪个用户登录的。
此时可以使用whoami命令。
[ecuser@HA5-DZ05 ~]$ whoami
e
- 浅谈Socket通信(一)
朱辉辉33
socket
在java中ServerSocket用于服务器端,用来监听端口。通过服务器监听,客户端发送请求,双方建立链接后才能通信。当服务器和客户端建立链接后,两边都会产生一个Socket实例,我们可以通过操作Socket来建立通信。
首先我建立一个ServerSocket对象。当然要导入java.net.ServerSocket包
ServerSock
- 关于框架的简单认识
西蜀石兰
框架
入职两个月多,依然是一个不会写代码的小白,每天的工作就是看代码,写wiki。
前端接触CSS、HTML、JS等语言,一直在用的CS模型,自然免不了数据库的链接及使用,真心涉及框架,项目中用到的BootStrap算一个吧,哦,JQuery只能算半个框架吧,我更觉得它是另外一种语言。
后台一直是纯Java代码,涉及的框架是Quzrtz和log4j。
都说学前端的要知道三大框架,目前node.
- You have an error in your SQL syntax; check the manual that corresponds to your
林鹤霄
You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'option,changed_ids ) values('0ac91f167f754c8cbac00e9e3dc372
- MySQL5.6的my.ini配置
aigo
mysql
注意:以下配置的服务器硬件是:8核16G内存
[client]
port=3306
[mysql]
default-character-set=utf8
[mysqld]
port=3306
basedir=D:/mysql-5.6.21-win
- mysql 全文模糊查找 便捷解决方案
alxw4616
mysql
mysql 全文模糊查找 便捷解决方案
2013/6/14 by 半仙
[email protected]
目的: 项目需求实现模糊查找.
原则: 查询不能超过 1秒.
问题: 目标表中有超过1千万条记录. 使用like '%str%' 进行模糊查询无法达到性能需求.
解决方案: 使用mysql全文索引.
1.全文索引 : MySQL支持全文索引和搜索功能。MySQL中的全文索
- 自定义数据结构 链表(单项 ,双向,环形)
百合不是茶
单项链表双向链表
链表与动态数组的实现方式差不多, 数组适合快速删除某个元素 链表则可以快速的保存数组并且可以是不连续的
单项链表;数据从第一个指向最后一个
实现代码:
//定义动态链表
clas
- threadLocal实例
bijian1013
javathreadjava多线程threadLocal
实例1:
package com.bijian.thread;
public class MyThread extends Thread {
private static ThreadLocal tl = new ThreadLocal() {
protected synchronized Object initialValue() {
return new Inte
- activemq安全设置—设置admin的用户名和密码
bijian1013
javaactivemq
ActiveMQ使用的是jetty服务器, 打开conf/jetty.xml文件,找到
<bean id="adminSecurityConstraint" class="org.eclipse.jetty.util.security.Constraint">
<p
- 【Java范型一】Java范型详解之范型集合和自定义范型类
bit1129
java
本文详细介绍Java的范型,写一篇关于范型的博客原因有两个,前几天要写个范型方法(返回值根据传入的类型而定),竟然想了半天,最后还是从网上找了个范型方法的写法;再者,前一段时间在看Gson, Gson这个JSON包的精华就在于对范型的优雅简单的处理,看它的源代码就比较迷糊,只其然不知其所以然。所以,还是花点时间系统的整理总结下范型吧。
范型内容
范型集合类
范型类
- 【HBase十二】HFile存储的是一个列族的数据
bit1129
hbase
在HBase中,每个HFile存储的是一个表中一个列族的数据,也就是说,当一个表中有多个列簇时,针对每个列簇插入数据,最后产生的数据是多个HFile,每个对应一个列族,通过如下操作验证
1. 建立一个有两个列族的表
create 'members','colfam1','colfam2'
2. 在members表中的colfam1中插入50*5
- Nginx 官方一个配置实例
ronin47
nginx 配置实例
user www www;
worker_processes 5;
error_log logs/error.log;
pid logs/nginx.pid;
worker_rlimit_nofile 8192;
events {
worker_connections 4096;}
http {
include conf/mim
- java-15.输入一颗二元查找树,将该树转换为它的镜像, 即在转换后的二元查找树中,左子树的结点都大于右子树的结点。 用递归和循环
bylijinnan
java
//use recursion
public static void mirrorHelp1(Node node){
if(node==null)return;
swapChild(node);
mirrorHelp1(node.getLeft());
mirrorHelp1(node.getRight());
}
//use no recursion bu
- 返回null还是empty
bylijinnan
javaapachespring编程
第一个问题,函数是应当返回null还是长度为0的数组(或集合)?
第二个问题,函数输入参数不当时,是异常还是返回null?
先看第一个问题
有两个约定我觉得应当遵守:
1.返回零长度的数组或集合而不是null(详见《Effective Java》)
理由就是,如果返回empty,就可以少了很多not-null判断:
List<Person> list
- [科技与项目]工作流厂商的战略机遇期
comsci
工作流
在新的战略平衡形成之前,这里有一个短暂的战略机遇期,只有大概最短6年,最长14年的时间,这段时间就好像我们森林里面的小动物,在秋天中,必须抓紧一切时间存储坚果一样,否则无法熬过漫长的冬季。。。。
在微软,甲骨文,谷歌,IBM,SONY
- 过度设计-举例
cuityang
过度设计
过度设计,需要更多设计时间和测试成本,如无必要,还是尽量简洁一些好。
未来的事情,比如 访问量,比如数据库的容量,比如是否需要改成分布式 都是无法预料的
再举一个例子,对闰年的判断逻辑:
1、 if($Year%4==0) return True; else return Fasle;
2、if ( ($Year%4==0 &am
- java进阶,《Java性能优化权威指南》试读
darkblue086
java性能优化
记得当年随意读了微软出版社的.NET 2.0应用程序调试,才发现调试器如此强大,应用程序开发调试其实真的简单了很多,不仅仅是因为里面介绍了很多调试器工具的使用,更是因为里面寻找问题并重现问题的思想让我震撼,时隔多年,Java已经如日中天,成为许多大型企业应用的首选,而今天,这本《Java性能优化权威指南》让我再次找到了这种感觉,从不经意的开发过程让我刮目相看,原来性能调优不是简单地看看热点在哪里,
- 网络学习笔记初识OSI七层模型与TCP协议
dcj3sjt126com
学习笔记
协议:在计算机网络中通信各方面所达成的、共同遵守和执行的一系列约定 计算机网络的体系结构:计算机网络的层次结构和各层协议的集合。 两类服务: 面向连接的服务通信双方在通信之前先建立某种状态,并在通信过程中维持这种状态的变化,同时为服务对象预先分配一定的资源。这种服务叫做面向连接的服务。 面向无连接的服务通信双方在通信前后不建立和维持状态,不为服务对象
- mac中用命令行运行mysql
dcj3sjt126com
mysqllinuxmac
参考这篇博客:http://www.cnblogs.com/macro-cheng/archive/2011/10/25/mysql-001.html 感觉workbench不好用(有点先入为主了)。
1,安装mysql
在mysql的官方网站下载 mysql 5.5.23 http://www.mysql.com/downloads/mysql/,根据我的机器的配置情况选择了64
- MongDB查询(1)——基本查询[五]
eksliang
mongodbmongodb 查询mongodb find
MongDB查询
转载请出自出处:http://eksliang.iteye.com/blog/2174452 一、find简介
MongoDB中使用find来进行查询。
API:如下
function ( query , fields , limit , skip, batchSize, options ){.....}
参数含义:
query:查询参数
fie
- base64,加密解密 经融加密,对接
y806839048
经融加密对接
String data0 = new String(Base64.encode(bo.getPaymentResult().getBytes(("GBK"))));
String data1 = new String(Base64.decode(data0.toCharArray()),"GBK");
// 注意编码格式,注意用于加密,解密的要是同
- JavaWeb之JSP概述
ihuning
javaweb
什么是JSP?为什么使用JSP?
JSP表示Java Server Page,即嵌有Java代码的HTML页面。使用JSP是因为在HTML中嵌入Java代码比在Java代码中拼接字符串更容易、更方便和更高效。
JSP起源
在很多动态网页中,绝大部分内容都是固定不变的,只有局部内容需要动态产生和改变。
如果使用Servl
- apple watch 指南
啸笑天
apple
1. 文档
WatchKit Programming Guide(中译在线版 By @CocoaChina) 译文 译者 原文 概览 - 开始为 Apple Watch 进行开发 @星夜暮晨 Overview - Developing for Apple Watch 概览 - 配置 Xcode 项目 - Overview - Configuring Yo
- java经典的基础题目
macroli
java编程
1.列举出 10个JAVA语言的优势 a:免费,开源,跨平台(平台独立性),简单易用,功能完善,面向对象,健壮性,多线程,结构中立,企业应用的成熟平台, 无线应用 2.列举出JAVA中10个面向对象编程的术语 a:包,类,接口,对象,属性,方法,构造器,继承,封装,多态,抽象,范型 3.列举出JAVA中6个比较常用的包 Java.lang;java.util;java.io;java.sql;ja
- 你所不知道神奇的js replace正则表达式
qiaolevip
每天进步一点点学习永无止境纵观千象regex
var v = 'C9CFBAA3CAD0';
console.log(v);
var arr = v.split('');
for (var i = 0; i < arr.length; i ++) {
if (i % 2 == 0) arr[i] = '%' + arr[i];
}
console.log(arr.join(''));
console.log(v.r
- [一起学Hive]之十五-分析Hive表和分区的统计信息(Statistics)
superlxw1234
hivehive分析表hive统计信息hive Statistics
关键字:Hive统计信息、分析Hive表、Hive Statistics
类似于Oracle的分析表,Hive中也提供了分析表和分区的功能,通过自动和手动分析Hive表,将Hive表的一些统计信息存储到元数据中。
表和分区的统计信息主要包括:行数、文件数、原始数据大小、所占存储大小、最后一次操作时间等;
14.1 新表的统计信息
对于一个新创建
- Spring Boot 1.2.5 发布
wiselyman
spring boot
Spring Boot 1.2.5已在7月2日发布,现在可以从spring的maven库和maven中心库下载。
这个版本是一个维护的发布版,主要是一些修复以及将Spring的依赖提升至4.1.7(包含重要的安全修复)。
官方建议所有的Spring Boot用户升级这个版本。
项目首页 | 源