AtCoder Beginner Contest 237:F |LIS| = 3

F |LIS| = 3
具体题面见上述链接

题目大意

求长度为 n n n ,每个元素小于 m m m 的序列,满足以下条件的有多少种:
最长上升子序列长度为3.

题解

考虑动态规划
我们需要记录长度为1的最长上升子序列最后一个元素的最小值,以及长度为2和长度为3的最小值。

dp数组f[i][k1][k2][k3]
i 表示当前序列长度,k1 表示当前序列长度为1的最长上升序列的最后一个元素的最小值(其实就是序列的最小元素),k2 表示当前序列长度为2的最长上升子序列的最后一个元素的最小值,k3 则表示当前序列长度为3的最长上升子序列的最后一个元素的最小值。动态规划数组的值则表示满足当前的序列有几种。
接下来,考虑动态规划是如何转移的
一开始当长度为0时,k1,k2和k3的值是正无穷,在操作过程中 m + 1 就是无穷。
插入第一元素后,长度为1,第一个元素的值就是k1。
如果当前的序列长度为 i - 1
在末尾插入第 i 个元素 x ,如果 x ≤ \le x < < <k2 ,那么k2 就变成了 x, 如果 x>k3 那么k3就变成了 x。
转移方程为

 if(x<=k1)f[i][x][k2][k3]=(f[i-1][k1][k2][k3]+f[i][x][k2][k3])%mod;
        else if(x<=k2)f[i][k1][x][k3]=(f[i-1][k1][k2][k3]+f[i][k1][x][k3])%mod;
        else if(x<=k3)f[i][k1][k2][x]=(f[i][k1][k2][x]+f[i-1][k1][k2][k3])%mod;

由于m<10,分别枚举动态规划的数组每一维,效率也满足要求。
我的代码

你可能感兴趣的:(ACM,动态规划,算法)