coco关键点标注json_将labelme格式数据转化为标准的coco数据集格式方式

labelme标注图像生成的json格式:

{

"version": "3.11.2",

"flags": {},

"shapes": [# 每个对象的形状

{ # 第一个对象

"label": "malignant",

"line_color": null,

"fill_color": null,

"points": [# 边缘是由点构成,将这些点连在一起就是对象的边缘多边形

[

371, # 第一个点 x 坐标

257 # 第一个点 y 坐标

],

...

[

412,

255

]

],

"shape_type": "polygon" # 形状类型:多边形

},

{

"label": "malignant", # 第一个对象的标签

"line_color": null,

"fill_color": null,

"points": [# 第二个对象

[

522,

274

],

...

[

561,

303

]

],

"shape_type": "polygon"

},

{

"label": "malignant", # 第二个对象的标签

"line_color": null,

"fill_color": null,

"imagePath": "../../val2017/000001.jpg", # 原始图片的路径

"imageData":"something too long ",# 原图像数据 通过该字段可以解析出原图像数据

"imageHeight": 768,

"imageWidth": 1024

}

coco标准数据集格式:

COCO通过大量使用Amazon Mechanical Turk来收集数据。COCO数据集现在有3种标注类型:object instances(目标实例), object keypoints(目标上的关键点), and image captions(看图说话),使用JSON文件存储。

基本的JSON结构体类型

这3种类型共享下面所列的基本类型,包括image、categories、annotation类型。

Images类型:

"images": [

{

"height": 768,

"width": 1024,

"id": 1, #图片id

"file_name": "000002.jpg"

}

]

categories类型:

"categories": [

{

"supercategory": "Cancer", #父类

"id": 1, #标签类别id,0表示背景

"name": "benign" #子类

},

{

"supercategory": "Cancer",

"id": 2,

"name": "malignant"

}

],

annotations类型:

"annotations": [

{

"segmentation": [#坐标点的坐标值

[

418,

256,

391,

293,

406,

323,

432,

340,

452,

329,

458,

311,

458,

286,

455,

277,

439,

264,

418,

293,

391,

256

]

],

"iscrowd": 0, #单个的对象(iscrowd=0)可能需要多个polygon来表示

"image_id": 1, #和image的id保持一致

"bbox": [ #标注的边框值 bbox是将segmentation包起来的水平矩形

391.0,

256.0,

67.0,

84.0

],

"area": 5628.0, #标注的边框面积

"category_id": 1, #所属类别id

"id": 1 #标注边框的id : 1,2,3...,n

}

]

labelme 转化为coco

# -*- coding:utf-8 -*-

# !/usr/bin/env python

import argparse

import json

import matplotlib.pyplot as plt

import skimage.io as io

import cv2

from labelme import utils

import numpy as np

import glob

import PIL.Image

class MyEncoder(json.JSONEncoder):

def default(self, obj):

if isinstance(obj, np.integer):

return int(obj)

elif isinstance(obj, np.floating):

return float(obj)

elif isinstance(obj, np.ndarray):

return obj.tolist()

else:

return super(MyEncoder, self).default(obj)

class labelme2coco(object):

def __init__(self, labelme_json=[], save_json_path='./tran.json'):

'''

:param labelme_json: 所有labelme的json文件路径组成的列表

:param save_json_path: json保存位置

'''

self.labelme_json = labelme_json

self.save_json_path = save_json_path

self.images = []

self.categories = []

self.annotations = []

# self.data_coco = {}

self.label = []

self.annID = 1

self.height = 0

self.width = 0

self.save_json()

def data_transfer(self):

for num, json_file in enumerate(self.labelme_json):

with open(json_file, 'r') as fp:

data = json.load(fp) # 加载json文件

self.images.append(self.image(data, num))

for shapes in data['shapes']:

label = shapes['label']

if label not in self.label:

self.categories.append(self.categorie(label))

self.label.append(label)

points = shapes['points']#这里的point是用rectangle标注得到的,只有两个点,需要转成四个点

#points.append([points[0][0],points[1][1]])

#points.append([points[1][0],points[0][1]])

self.annotations.append(self.annotation(points, label, num))

self.annID += 1

def image(self, data, num):

image = {}

img = utils.img_b64_to_arr(data['imageData']) # 解析原图片数据

# img=io.imread(data['imagePath']) # 通过图片路径打开图片

# img = cv2.imread(data['imagePath'], 0)

height, width = img.shape[:2]

img = None

image['height'] = height

image['width'] = width

image['id'] = num + 1

#image['file_name'] = data['imagePath'].split('/')[-1]

image['file_name'] = data['imagePath'][3:14]

self.height = height

self.width = width

return image

def categorie(self, label):

categorie = {}

categorie['supercategory'] = 'Cancer'

categorie['id'] = len(self.label) + 1 # 0 默认为背景

categorie['name'] = label

return categorie

def annotation(self, points, label, num):

annotation = {}

annotation['segmentation'] = [list(np.asarray(points).flatten())]

annotation['iscrowd'] = 0

annotation['image_id'] = num + 1

# annotation['bbox'] = str(self.getbbox(points)) # 使用list保存json文件时报错(不知道为什么)

# list(map(int,a[1:-1].split(','))) a=annotation['bbox'] 使用该方式转成list

annotation['bbox'] = list(map(float, self.getbbox(points)))

annotation['area'] = annotation['bbox'][2] * annotation['bbox'][3]

# annotation['category_id'] = self.getcatid(label)

annotation['category_id'] = self.getcatid(label)#注意,源代码默认为1

annotation['id'] = self.annID

return annotation

def getcatid(self, label):

for categorie in self.categories:

if label == categorie['name']:

return categorie['id']

return 1

def getbbox(self, points):

# img = np.zeros([self.height,self.width],np.uint8)

# cv2.polylines(img, [np.asarray(points)], True, 1, lineType=cv2.LINE_AA) # 画边界线

# cv2.fillPoly(img, [np.asarray(points)], 1) # 画多边形 内部像素值为1

polygons = points

mask = self.polygons_to_mask([self.height, self.width], polygons)

return self.mask2box(mask)

def mask2box(self, mask):

'''从mask反算出其边框

mask:[h,w] 0、1组成的图片

1对应对象,只需计算1对应的行列号(左上角行列号,右下角行列号,就可以算出其边框)

'''

# np.where(mask==1)

index = np.argwhere(mask == 1)

rows = index[:, 0]

clos = index[:, 1]

# 解析左上角行列号

left_top_r = np.min(rows) # y

left_top_c = np.min(clos) # x

# 解析右下角行列号

right_bottom_r = np.max(rows)

right_bottom_c = np.max(clos)

# return [(left_top_r,left_top_c),(right_bottom_r,right_bottom_c)]

# return [(left_top_c, left_top_r), (right_bottom_c, right_bottom_r)]

# return [left_top_c, left_top_r, right_bottom_c, right_bottom_r] # [x1,y1,x2,y2]

return [left_top_c, left_top_r, right_bottom_c - left_top_c,

right_bottom_r - left_top_r] # [x1,y1,w,h] 对应COCO的bbox格式

def polygons_to_mask(self, img_shape, polygons):

mask = np.zeros(img_shape, dtype=np.uint8)

mask = PIL.Image.fromarray(mask)

xy = list(map(tuple, polygons))

PIL.ImageDraw.Draw(mask).polygon(xy=xy, outline=1, fill=1)

mask = np.array(mask, dtype=bool)

return mask

def data2coco(self):

data_coco = {}

data_coco['images'] = self.images

data_coco['categories'] = self.categories

data_coco['annotations'] = self.annotations

return data_coco

def save_json(self):

self.data_transfer()

self.data_coco = self.data2coco()

# 保存json文件

json.dump(self.data_coco, open(self.save_json_path, 'w'), indent=4, cls=MyEncoder) # indent=4 更加美观显示

labelme_json = glob.glob('./Annotations/*.json')

# labelme_json=['./Annotations/*.json']

labelme2coco(labelme_json, './json/test.json')

以上这篇将labelme格式数据转化为标准的coco数据集格式方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

你可能感兴趣的:(coco关键点标注json)