批量修改json文件重命名后路径imagPath

问题json文件转为coco数据集时,coco数据集出错,coco数据集中的文件信息与原图不符。

原因:查看生成的instances_val2014.json文件后发现,文件名的路径还是json重命名之前的路径,所以导致原图与json信息无法匹配。

如下图:json文件名与文件中imagepath不一样。                                               

批量修改json文件重命名后路径imagPath_第1张图片

因此需要将imagepath 改成json现在的文件名。具体代码如下:

import json
import os, sys
json_path= '/home/f405/桌面/my_data/train/json/'
def get_json_data(json_path):
    with open(json_path,'rb')as f:
        params= json.load(f)

# 加载json文件中的内容给params

        a= filename[:-5]
        params['imagePath']= a+".jpg" #这两行控制修改的内容 时间有限就写的很草率

        dict= params

# 将修改后的内容保存在dict中

        f.close()

# 关闭json读模式

        return dict

# 返回dict字典内容

def write_json_data(dict):

# 写入json文件

    with open(json_path1,'w')as r:


# 定义为写模式,名称定义为r

        json.dump(dict, r,indent = 2)  #indent控制间隔

# 将dict写入名称为r的文件中

        r.close()

# 关闭json写模式

#获取文件夹中的文件名称列表

filenames=os.listdir(json_path)

#遍历文件名

for filename in filenames:
    filepath = json_path+'/'+filename

# print(filepath)

    dict= {}

    the_revised_dict= get_json_data(filepath)

    json_path1= '/home/f405/桌面/3/'+filename     # 修改json文件后保存的路径

    write_json_data(the_revised_dict)

 附带json转coco数据集代码:

# -*- coding:utf-8 -*-
# !/usr/bin/env python

import json
from labelme import utils
import numpy as np
import glob
import PIL.Image
labels={'cell1':4,'cell2':2,'cell3':3,'cell4':5,'cell5':1}
class MyEncoder(json.JSONEncoder):
    def default(self, obj):

        if isinstance(obj, np.integer):
            return int(obj)
        elif isinstance(obj, np.floating):
            return float(obj)
        elif isinstance(obj, np.ndarray):
            return obj.tolist()
        else:
            return super(MyEncoder, self).default(obj)


class labelme2coco(object):
    def __init__(self, labelme_json=[], save_json_path='./tran.json'):
        self.labelme_json = labelme_json
        self.save_json_path = save_json_path
        self.images = []
        self.categories = []
        self.annotations = []
        self.label = []
        self.annID = 1
        self.height = 0
        self.width = 0

        self.save_json()

    def data_transfer(self):

        for num, json_file in enumerate(self.labelme_json):
            imagePath=json_file.split('.')[0]+'.jpg'
            imageName=imagePath.split('\\')[-1]
            print(imageName)
            with open(json_file, 'r') as fp:
                data = json.load(fp) 
                self.images.append(self.image(data, num,imageName))
                for shapes in data['shapes']:
                    label = shapes['label']
                    if label not in self.label:
                        self.categories.append(self.categorie(label))
                        self.label.append(label)
                    points = shapes['points']
                    self.annotations.append(self.annotation(points, label, num))
                    self.annID += 1

    def image(self, data, num,imagePath):
        image = {}
        img = utils.img_b64_to_arr(data['imageData'])
        height, width = img.shape[:2]
        img = None
        image['height'] = height
        image['width'] = width
        image['id'] = num + 1
        # image['file_name'] = data['imagePath'].split('/')[-1]
        image['file_name'] = imagePath
        self.height = height
        self.width = width

        return image

    def categorie(self, label):
        categorie = {}
        categorie['supercategory'] = 'Cancer'
        categorie['id'] = labels[label]
        categorie['name'] = label
        return categorie

    def annotation(self, points, label, num):
        annotation = {}
        annotation['segmentation'] = [list(np.asarray(points).flatten())]
        annotation['iscrowd'] = 0
        annotation['image_id'] = num + 1
        annotation['bbox'] = list(map(float, self.getbbox(points)))
        annotation['area'] = annotation['bbox'][2] * annotation['bbox'][3]

        annotation['category_id'] = self.getcatid(label)
        print(label,annotation['category_id'])
        annotation['id'] = self.annID
        return annotation

    def getcatid(self, label):
        for categorie in self.categories:
            if label == categorie['name']:
                    return categorie['id']
            return 1

    def getbbox(self, points):

        polygons = points

        mask = self.polygons_to_mask([self.height, self.width], polygons)
        return self.mask2box(mask)
    def mask2box(self, mask):
        index = np.argwhere(mask == 1)
        rows = index[:, 0]
        clos = index[:, 1]
        left_top_r = np.min(rows)
        left_top_c = np.min(clos)
        right_bottom_r = np.max(rows)
        right_bottom_c = np.max(clos)

        return [left_top_c, left_top_r, right_bottom_c - left_top_c,
                right_bottom_r - left_top_r]

    def polygons_to_mask(self, img_shape, polygons):
        mask = np.zeros(img_shape, dtype=np.uint8)
        mask = PIL.Image.fromarray(mask)
        xy = list(map(tuple, polygons))
        PIL.ImageDraw.Draw(mask).polygon(xy=xy, outline=1, fill=1)
        mask = np.array(mask, dtype=bool)
        return mask

    def data2coco(self):
        data_coco = {}
        data_coco['images'] = self.images
        data_coco['categories'] = self.categories
        data_coco['annotations'] = self.annotations
        return data_coco

    def save_json(self):
        self.data_transfer()
        self.data_coco = self.data2coco()
        json.dump(self.data_coco, open(self.save_json_path, 'w'), indent=4, cls=MyEncoder)


labelme_json = glob.glob(r'./*.json')


labelme2coco(labelme_json, '.\\instances_val2014.json')

若出错使用下面的

# -*- coding:utf-8 -*-

import argparse
import json
import matplotlib.pyplot as plt
import skimage.io as io
# import cv2
from labelme import utils
import numpy as np
import glob
import PIL.Image

labels={'cell1':1,'cell2':2,'cell3':3,'cell4':4,'cell5':5}
class MyEncoder(json.JSONEncoder):
    def default(self, obj):
        if isinstance(obj, np.integer):
            return int(obj)
        elif isinstance(obj, np.floating):
            return float(obj)
        elif isinstance(obj, np.ndarray):
            return obj.tolist()
        else:
            return super(MyEncoder, self).default(obj)


class labelme2coco(object):
    def __init__(self, labelme_json=[], save_json_path='./tran.json'):
        self.labelme_json = labelme_json
        self.save_json_path = save_json_path
        self.images = []
        self.categories = []
        self.annotations = []
        # self.data_coco = {}
        self.label = []
        self.annID = 1
        self.height = 0
        self.width = 0

        self.save_json()

    def data_transfer(self):

        for num, json_file in enumerate(self.labelme_json):
            with open(json_file, 'r') as fp:
                data = json.load(fp)  # 加载json文件
                self.images.append(self.image(data, num))
                for shapes in data['shapes']:
                    label = shapes['label']
                    if label not in self.label:
                        self.categories.append(self.categorie(label))
                        self.label.append(label)
                    points = shapes['points']  # 这里的point是用rectangle标注得到的,只有两个点,需要转成四个点
                    points.append([points[0][0], points[1][1]])
                    points.append([points[1][0], points[0][1]])
                    self.annotations.append(self.annotation(points, label, num))
                    self.annID += 1

    def image(self, data, num):
        image = {}
        img = utils.img_b64_to_arr(data['imageData'])  # 解析原图片数据
        # img=io.imread(data['imagePath']) # 通过图片路径打开图片
        # img = cv2.imread(data['imagePath'], 0)
        height, width = img.shape[:2]
        img = None
        image['height'] = height
        image['width'] = width
        image['id'] = num + 1
        image['file_name'] = data['imagePath'].split('/')[-1]

        self.height = height
        self.width = width

        return image

    def categorie(self, label):
        categorie = {}
        categorie['supercategory'] = 'Cancer'
        categorie['id'] =labels[label]   # 0 默认为背景
        categorie['name'] = label
        return categorie

    def annotation(self, points, label, num):
        annotation = {}
        annotation['segmentation'] = [list(np.asarray(points).flatten())]
        annotation['iscrowd'] = 0
        annotation['image_id'] = num + 1
        # annotation['bbox'] = str(self.getbbox(points)) # 使用list保存json文件时报错(不知道为什么)
        # list(map(int,a[1:-1].split(','))) a=annotation['bbox'] 使用该方式转成list
        annotation['bbox'] = list(map(float, self.getbbox(points)))
        annotation['area'] = annotation['bbox'][2] * annotation['bbox'][3]
        # annotation['category_id'] = self.getcatid(label)
        annotation['category_id'] = self.getcatid(label)  # 注意,源代码默认为1
        annotation['id'] = self.annID
        return annotation

    def getcatid(self, label):
        for categorie in self.categories:
            if label == categorie['name']:
                return categorie['id']
        return 1

    def getbbox(self, points):
        # img = np.zeros([self.height,self.width],np.uint8)
        # cv2.polylines(img, [np.asarray(points)], True, 1, lineType=cv2.LINE_AA)  # 画边界线
        # cv2.fillPoly(img, [np.asarray(points)], 1)  # 画多边形 内部像素值为1
        polygons = points

        mask = self.polygons_to_mask([self.height, self.width], polygons)
        return self.mask2box(mask)

    def mask2box(self, mask):
        '''从mask反算出其边框
        mask:[h,w]  0、1组成的图片
        1对应对象,只需计算1对应的行列号(左上角行列号,右下角行列号,就可以算出其边框)
        '''
        # np.where(mask==1)
        index = np.argwhere(mask == 1)
        rows = index[:, 0]
        clos = index[:, 1]
        # 解析左上角行列号
        left_top_r = np.min(rows)  # y
        left_top_c = np.min(clos)  # x

        # 解析右下角行列号
        right_bottom_r = np.max(rows)
        right_bottom_c = np.max(clos)

        # return [(left_top_r,left_top_c),(right_bottom_r,right_bottom_c)]
        # return [(left_top_c, left_top_r), (right_bottom_c, right_bottom_r)]
        # return [left_top_c, left_top_r, right_bottom_c, right_bottom_r]  # [x1,y1,x2,y2]
        return [left_top_c, left_top_r, right_bottom_c - left_top_c,
                right_bottom_r - left_top_r]  # [x1,y1,w,h] 对应COCO的bbox格式

    def polygons_to_mask(self, img_shape, polygons):
        mask = np.zeros(img_shape, dtype=np.uint8)
        mask = PIL.Image.fromarray(mask)
        xy = list(map(tuple, polygons))
        PIL.ImageDraw.Draw(mask).polygon(xy=xy, outline=1, fill=1)
        mask = np.array(mask, dtype=bool)
        return mask

    def data2coco(self):
        data_coco = {}
        data_coco['images'] = self.images
        data_coco['categories'] = self.categories
        data_coco['annotations'] = self.annotations
        return data_coco

    def save_json(self):
        self.data_transfer()
        self.data_coco = self.data2coco()
        # 保存json文件
        json.dump(self.data_coco, open(self.save_json_path, 'w'), indent=4, cls=MyEncoder)  # indent=4 更加美观显示



labelme_json = glob.glob(r'./*.json')
# labelme_json=['./1.json']

labelme2coco(labelme_json, '.\\instances_val2014.json')

 

 

你可能感兴趣的:(python,json,神经网络)