有关梯度的概念,高数书上解释是方向导数的一个单位向量。挺抽象。
个人认为在神经网络中,梯度可以直接理解成导数,打个比方y=kx。
y的导数就是 (y+y)/(x+x),当x逼近0的值,就是高数的导数概念嘛。
神经网络通常依赖反向传播求梯度来更新网络参数,求梯度过程通常是一件非常复杂而容易出错的事情。
而深度学习框架可以帮助我们自动地完成这种求梯度运算。
Pytorch一般通过反向传播 backward 方法 实现这种求梯度计算。该方法求得的梯度将存在对应自变量张量的grad属性下。
除此之外,也能够调用torch.autograd.grad 函数来实现求梯度计算。
这就是Pytorch的自动微分机制。
backward 方法通常在一个标量张量上调用,该方法求得的梯度将存在对应自变量张量的grad属性下。
如果调用的张量非标量,则要传入一个和它同形状 的gradient参数张量。
相当于用该gradient参数张量与调用张量作向量点乘,得到的标量结果再反向传播。
输入:
1, 标量的反向传播
import numpy as np
import torch
# f(x) = a*x**2 + b*x + c的导数
x = torch.tensor(0.0,requires_grad = True) # x需要被求导
a = torch.tensor(1.0)
b = torch.tensor(-2.0)
c = torch.tensor(1.0)
y = a*torch.pow(x,2) + b*x + c
y.backward()
dy_dx = x.grad
print(dy_dx)
输出:
tensor(-2.)
2, 非标量的反向传播
输入:
import numpy as np
import torch
# f(x) = a*x**2 + b*x + c
x = torch.tensor([[0.0,0.0],[1.0,2.0]],requires_grad = True) # x需要被求导
a = torch.tensor(1.0)
b = torch.tensor(-2.0)
c = torch.tensor(1.0)
y = a*torch.pow(x,2) + b*x + c
gradient = torch.tensor([[1.0,1.0],[1.0,1.0]])
print("x:\n",x)
print("y:\n",y)
y.backward(gradient = gradient)
x_grad = x.grad
print("x_grad:\n",x_grad)
输出:
x:
tensor([[0., 0.],
[1., 2.]], requires_grad=True)
y:
tensor([[1., 1.],
[0., 1.]], grad_fn=<AddBackward0>)
x_grad:
tensor([[-2., -2.],
[ 0., 2.]])
反向传播的梯度就是x梯度的负数。
输入:
import numpy as np
import torch
# f(x) = a*x**2 + b*x + c的最小值
x = torch.tensor(0.0,requires_grad = True) # x需要被求导
a = torch.tensor(1.0)
b = torch.tensor(-2.0)
c = torch.tensor(1.0)
optimizer = torch.optim.SGD(params=[x],lr = 0.01)
def f(x):
result = a*torch.pow(x,2) + b*x + c
return(result)
for i in range(500):
optimizer.zero_grad()
y = f(x)
y.backward()
optimizer.step()
print("y=",f(x).data,";","x=",x.data)
输出:
y= tensor(0.) ; x= tensor(1.0000)
如此就是神经网络训练三部曲:求梯度,反向传播,更新loss。最终使得loss最小
重点了解梯度的含义即可,网络训练可以在实操中慢慢理解掌握。
点个赞、关注一下,给博主更多动力呗。么么哒~
参考:
https://github.com/lyhue1991/eat_pytorch_in_20_days