- 《一文吃透!NLTK与SpaCy,自然语言处理的神兵利器》
人工智能深度学习
在人工智能的璀璨星空中,自然语言处理(NLP)无疑是最为耀眼的领域之一。它让机器能够理解、处理和生成人类语言,极大地推动了智能交互的发展。而在Python的NLP工具库中,NLTK和SpaCy就像两把锋利的宝剑,各自散发着独特的光芒。今天,就让我们深入探究这两款工具的使用技巧与优势,为你的NLP之旅增添强大助力。一、NLTK:自然语言处理的瑞士军刀NLTK(NaturalLanguageToolk
- 2025年大模型与Transformer架构:技术前沿与未来趋势报告
和老莫一起学AI
transformer架构深度学习人工智能产品经理学习大模型
_“欧米伽未来研究所”关注科技未来发展趋势,研究人类向欧米伽点演化过程中面临的重大机遇与挑战。将不定期推荐和发布世界范围重要科技研究进展和未来趋势研究。在人工智能的宏大版图中,Transformer架构无疑是一颗璀璨的明星。它的出现,彻底改变了自然语言处理、计算机视觉等诸多领域的发展轨迹。《2025年大模型与Transformer架构:技术前沿与未来趋势报告》深入剖析了Transformer架构的
- AI 大模型创业:如何利用市场优势?
SuperAGI2025
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
AI大模型创业:如何利用市场优势?1.背景介绍随着人工智能技术的不断发展,大模型(LargeModels)在商业化应用中日益受到关注。大模型是指在特定领域中应用广泛、参数量巨大的神经网络模型,如BERT、GPT-3、DALL-E等。这些大模型通过在大规模数据集上进行预训练,具备强大的泛化能力和适应性,能够广泛应用于自然语言处理(NLP)、计算机视觉(CV)、生成对抗网络(GAN)等多个领域。然而,
- 产品经理学习——AI产品
Li灿灿
产品经理学习人工智能
本篇文章,主要是针对目前不同类型AI公司的产品经理职责和AI产品经理的模型进行介绍。AI产品分类AI产品分为软件型和软硬件结合型,软件型的AI产品主要是具备理解、推理和决策能力的AI,如NLP(自然语言处理)系统或者创造类,创作型内容如音乐、艺术和写作等。软硬结合型AI产品一般和传统领域相关,如医疗AI、教育AI和零售AI等。有些公司是纯粹的AI公司,对应的特点是专注于做底层的算法,做芯片技术,纯
- 智能客服平台的架构设计:实现高效、安全、可靠的服务运行
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战LLM大模型落地实战指南自然语言处理人工智能语言模型编程实践开发语言架构设计
这篇文章将深入探讨智能客服平台的架构设计,以及如何实现高效、安全、可靠的服务运行。我会遵循您提供的要求和结构模板来撰写这篇文章。让我们开始吧。智能客服平台的架构设计,实现高效、安全、可靠的服务运行关键词:智能客服、架构设计、高效性、安全性、可靠性、微服务、自然语言处理、机器学习1.背景介绍在当今数字化时代,客户服务已成为企业与客户之间沟通的关键纽带。随着人工智能技术的快速发展,智能客服平台应运而生
- 深入解析LangChain:构建智能应用的全方位指南
AIGC大模型 吱屋猪
langchain语言模型人工智能自然语言处理llama百度机器学习
1.LangChain介绍与环境配置面试官:“你能先简单介绍一下LangChain吗?包括它的背景、主要功能,以及它在当前语言模型开发中的意义。”你:"LangChain是一个开源框架,旨在简化和增强基于语言模型的应用开发。随着语言模型,特别是大型预训练模型的兴起,开发者逐渐认识到这些模型不仅可以生成文本,还可以被用于处理复杂的对话、数据分析以及其他需要自然语言处理的任务。然而,这些模型的集成和实
- deepseek与gpt,核心原理对比
test猿
gpt
DeepSeek与GPT作为AI大模型,在自然语言处理等领域展现出强大的能力,它们的核心原理对比主要体现在模型架构、训练策略、资源效率以及应用场景优化等方面。一、模型架构DeepSeek混合专家(MoE)框架:DeepSeek采用了混合专家框架,其内部包含多个“专家”子模块,每个子模块专注于不同的任务或数据领域。例如,DeepSeek-R1拥有6710亿参数,但每次仅激活约370亿参数,通过动态选
- 教育小程序+AI出题:如何通过自然语言处理技术提升题目质量
万岳科技系统开发
人工智能小程序自然语言处理
随着教育科技的飞速发展,教育小程序已经成为学生与教师之间互动的重要平台之一。与此同时,人工智能(AI)和自然语言处理(NLP)技术的应用正在不断推动教育内容的智能化。特别是在AI出题系统中,如何通过NLP技术提升题目质量,成为教育领域中的一个重要课题。本文将介绍如何利用自然语言处理技术,通过AI出题系统自动生成高质量、个性化的题目,提升教育小程序的交互性与教学效果。一、自然语言处理(NLP)概述自
- 使用Python进行自然语言理解和意图识别毕业设计源码
sj52abcd
python课程设计开发语言毕业设计
博主介绍:✌专注于VUE,小程序,安卓,Java,python,物联网专业,有17年开发经验,长年从事毕业指导,项目实战✌选取一个适合的毕业设计题目很重要。✌关注✌私信我✌具体的问题,我会尽力帮助你。研究的背景:随着人工智能的发展,自然语言处理成为了人工智能领域的一个重要分支。在自然语言处理中,理解用户的意图是非常关键的一步。随着Python语言的广泛应用,Python成为了许多自然语言处理任务的
- 大模型prompt实例:知识库信息质量校验模块
写代码的中青年
大模型prompt人工智能python大模型LLM
大模型相关目录大模型,包括部署微调prompt/Agent应用开发、知识库增强、数据库增强、知识图谱增强、自然语言处理、多模态等大模型应用开发内容从0起步,扬帆起航。大模型应用向开发路径:AI代理工作流大模型应用开发实用开源项目汇总大模型问答项目问答性能评估方法大模型数据侧总结大模型token等基本概念及参数和内存的关系大模型应用开发-华为大模型生态规划从零开始的LLaMA-Factory的指令增
- 数字人技术在短视频中的应用
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能
数字人、短视频、人工智能、计算机视觉、自然语言处理、虚拟主播、内容创作1.背景介绍短视频作为一种新兴的传播媒介,其内容形式丰富、传播速度快、用户粘性强,已成为当今互联网领域最热门的应用之一。随着技术的不断发展,数字人技术逐渐成熟,并开始在短视频领域得到广泛应用。数字人是指利用计算机技术模拟真实人类形象和行为的虚拟角色,其具备逼真的外形、流畅的肢体动作和自然的语言表达能力。数字人技术在短视频领域的应
- deep seek
m0_69576880
前端ai
1.介绍:DeepSeek是一款由国内人工智能公司研发的大型语言模型,拥有强大的自然语言处理能力,能够理解并回答问题,还能辅助写代码、整理资料和解决复杂的数学问题。免费开源,媲美ChatGPT最近最火爆的AI对话程序。www.deepseek.com这是deepseek官网2.这是deepseek注册页面3.国产语言对话ai,大家有兴趣的可以去试试。不过chatgpt也进行了改变,大家也可以免费使
- RWKV Runner:让RNN-LLM模型触手可及
步子哥
rnn人工智能深度学习
在这个信息爆炸的时代,人工智能(AI)已经成为我们生活中不可或缺的一部分,尤其是大语言模型(LLM)在自然语言处理中的广泛应用。然而,尽管这些技术的潜力巨大,许多用户仍然面临着使用门槛高、配置复杂等问题。为了解决这一困境,RWKVRunner应运而生。它不仅提供了一个简便的接口,还让用户能够轻松地使用大语言模型。本文将深入探讨RWKVRunner的功能、安装步骤以及如何利用它来实现各种应用。RWK
- AI大模型(如GPT、BERT等)可以通过自然语言处理(NLP)和机器学习技术,显著提升测试效率
小赖同学啊
python人工智能自动化测试(apppcAPI)人工智能自然语言处理gpt
在软件测试中,AI大模型(如GPT、BERT等)可以通过自然语言处理(NLP)和机器学习技术,显著提升测试效率。以下是几个具体的应用场景及对应的代码实现示例:1.自动生成测试用例AI大模型可以根据需求文档或用户故事自动生成测试用例。代码示例(使用OpenAIGPTAPI):importopenai#设置OpenAIAPI密钥openai.api_key="your-openai-api-key"#
- 清影2.0(AI视频生成)技术浅析(二):自然语言处理
爱研究的小牛
AIGC—视频AIGC—自然语言处理自然语言处理人工智能音视频AIGC深度学习机器学习
清影2.0(AI视频生成)中的自然语言处理(NLP)技术是其核心组件之一,负责将用户输入的自然语言文本转化为机器可以理解的语义表示,从而指导后续的视频生成过程。一、基本原理1.目标清影2.0的NLP技术旨在将用户输入的自然语言文本转化为机器可以理解的语义表示,从而指导后续的视频生成。具体目标包括:1.深度语义理解:理解文本的语义、情感、意图等深层次信息。2.上下文关联:捕捉文本中词语之间、句子之间
- Python深度学习代做目标检测NLP计算机视觉强化学习
matlabgoodboy
计算机视觉python深度学习
了解您的需求,您似乎在寻找关于Python深度学习领域的代做服务,特别是在目标检测、自然语言处理(NLP)、计算机视觉以及强化学习方面。以下是一些关于这些领域的概述以及寻找相关服务的建议。1.Python深度学习代做概述目标检测:目标检测是计算机视觉中的一个重要任务,旨在识别图像或视频中的特定对象,并确定它们的位置。Python中的深度学习框架(如TensorFlow、PyTorch)和计算机视觉
- 使用OpenAI API进行文本分类标注
dgay_hua
人工智能python
技术背景介绍文本分类标注(Tagging)是一种非常有用的技术,可以对文档进行分类,例如情感分析、语言检测、风格判断、主题识别等。这项技术在自然语言处理(NLP)领域中有广泛的应用,例如社交媒体监控、客户反馈分析和自动化客服系统等。在本文中,我们将使用OpenAI的API,通过LangChain工具来进行文本分类标注。我们将展示如何定义分类函数和模式(schema),并通过实际代码演示实现文本分类
- 使用SparkLLM实现智能聊天:技术原理与实战演示
shuoac
java
在本篇文章中,我们将探讨如何使用iFlyTek的SparkLLM模型来实现智能聊天功能。我们将详细介绍SparkLLM的技术背景、核心原理,并通过实际代码展示如何进行实现。另外,还会分析应用场景并给出一些实践建议。技术背景介绍SparkLLM是由iFlyTek提供的一种强大的语言模型,支持多种语言生成任务。它能够理解并生成自然语言,适用于对话系统、内容生成、智能客服等场景。核心原理解析SparkL
- 赋能 DeepSeek:打造图文互生能力,助力测试工程师提效
Python测试之道
人工智能python
前言作为测试工程师,我们日常工作中经常需要处理图文相关的任务,例如:基于测试需求生成示意图:通过简单的文字描述生成流程图、架构图等,提高测试设计效率。从图中提取关键信息生成文档:从截图或流程图中提取重要信息,自动生成测试用例或需求分析。然而,DeepSeek-r1:1.5b本地模型虽然在自然语言处理方面表现出色,但并不具备直接的图像生成或图像解析能力。如果能为DeepSeek增加“图生文”或“文生
- 利用Infinity Embeddings创建文本嵌入
qahaj
python
技术背景介绍在自然语言处理(NLP)任务中,文本嵌入是一种将文本数据转换成固定维度向量的技术。这些向量能够捕捉文本之间的语义关系,使得在后续的任务(如文本分类、相似度计算等)中非常实用。Infinity嵌入模型是一种能够方便创建高质量文本嵌入的现代工具。核心原理解析InfinityEmbeddings利用强大的预训练模型,通过对输入的文本数据进行编码,生成具有语义意义的高维向量。这个过程不仅仅是简
- 在DeepSeek面前,还需要学习.NET吗?
dotNET跨平台
学习
随着人工智能技术的快速发展,像DeepSeek这样的大模型不断涌现,给技术领域带来了新的变革和挑战。与此同时,.NET作为微软推出的成熟技术平台,也有着自己独特的地位和价值。那么在DeepSeek面前,是否还需要学习.NET呢?答案是肯定的,原因主要有以下几点:应用场景不同-DeepSeek:主要聚焦于自然语言处理、智能对话等人工智能领域,为用户提供智能问答、文本生成等服务。例如,用户可以通过De
- 大语言模型原理基础与前沿 通过稀疏MoE扩展视觉语言模型
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理基础与前沿通过稀疏MoE扩展视觉语言模型1.背景介绍在人工智能领域,语言模型和视觉模型的结合已经成为一个重要的研究方向。大语言模型(LargeLanguageModels,LLMs)如GPT-3、BERT等,已经在自然语言处理(NLP)任务中取得了显著的成果。而视觉语言模型(Vision-LanguageModels,VLMs)则通过结合视觉和语言信息,进一步提升了模型在多模态任务中
- 26、深度学习-自学之路-NLP自然语言处理-理解加程序,怎么把现实的词翻译给机器识别。
小宇爱
深度学习-自学之路深度学习自然语言处理人工智能
一、怎么能让机器能够理解我们的语言呢,我们可以利用神经网络干很多的事情,那么我们是不是也可以用神经元做自然语言处理呢,现在很多的实际应用已经说明了这个问题,可以这么做。那我们考虑一下该怎么做,首先我们应该把我们现实中的每一个单词都用一个词向量来进行表示:importnumpyasnponehots={}onehots['cat']=np.array([1,0,0,0])onehots['the']
- 27、深度学习-自学之路-NLP自然语言处理-做一个简单的项目识别一组电影评论,来判断电影评论是积极的,还是消极的。
小宇爱
深度学习-自学之路深度学习自然语言处理人工智能
一、如果我们要做这个项目,第一步我们要做的就是需要有对应的训练数据集。这里提供两个数据集,一个是原始评论数据集《reviews.txt》,以及对应的评论是消极还是积极的数据集《labels.txt》,下面的程序就是找到这两个数据集,并把对应的数据集的内容分别赋值给reviews和labelsdefpretty_print_review_and_label(i):print(labels[i]+"\
- 探索Hugging Face平台:AI工具和集成指南
stjklkjhgffxw
人工智能python
探索HuggingFace平台:AI工具和集成指南在人工智能和自然语言处理领域,HuggingFace无疑是一个备受瞩目的平台。无论是开发者还是研究者,大家都能从中找到适合的资源和工具。本篇文章旨在为大家深入介绍如何在HuggingFace平台上使用不同的功能模块,包括模型、API和工具集成。主要内容1.安装和集成要使用HuggingFace与Langchain的集成功能,我们首先需要安装lang
- 云原生AI Agent应用安全防护方案最佳实践(上)
佛州小李哥
AWS技术AI安全人工智能亚马逊云科技awsai语言模型安全云计算
当下,AIAgent代理是一种全新的构建动态和复杂业务场景工作流的方式,利用大语言模型(LLM)作为推理引擎。这些Agent代理应用能够将复杂的自然语言查询任务分解为多个可执行步骤,并结合迭代反馈循环和自省机制,利用工具和Agent背后的API生成最终结果,返回给终端用户。这种方法需要评估Agent应用的鲁棒性,尤其是对于那些可能存在对抗攻击或有害内容的用户场景。亚马逊云科技BedrockAgen
- 详细说说VIT架构和Transformer架构的异同
AI生成曾小健
大模型LLM面试指南多模态MLLM大模型面试指南架构transformer深度学习
GPT-4oVisionTransformer(ViT)和Transformer架构之间的关系非常紧密,因为ViT是直接将Transformer应用到视觉任务中的一种方法。不过,由于图像数据与自然语言数据的特性不同,ViT在实现上对标准Transformer架构做了一些调整。以下是ViT和Transformer架构的异同点详细分析:1.Transformer架构的回顾Transformer是一种用
- 使用 OpenAI API 创建智能聊天机器人
vaidfl
机器人python
1.技术背景介绍在人工智能应用中,聊天机器人是一种非常流行的应用。得益于近几年自然语言处理(NLP)技术的飞速发展,聊天机器人已经从简单的问答模式发展到能够进行复杂对话的智能助手。本篇文章将深入介绍如何使用OpenAI提供的API构建一个智能聊天机器人,并通过实际代码演示实现过程。2.核心原理解析OpenAI提供的GPT模型是目前最先进的语言生成模型之一,它可以生成自然流畅的文本。我们可以通过调用
- 使用OpenAI的API构建聊天机器人
dgay_hua
机器人python
技术背景介绍聊天机器人是近年来热门的AI应用之一,无论是客服系统、智能助手还是社交娱乐,都可以看到其身影。构建一个高效的聊天机器人,离不开强大的自然语言处理模型。OpenAI提供的API为开发者简化了这一过程,本文将介绍如何使用OpenAI的API服务构建一个基本的聊天机器人。核心原理解析聊天机器人主要依赖于生成式预训练模型(GPT),它通过大量文本数据训练,学习语言模式和上下文关联,从而能够生成
- Andrej Karpathy:计算范式的变革者
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
《AndrejKarpathy:计算范式的变革者》概述本文旨在全面探讨AndrejKarpathy在计算范式变革中的角色和贡献。AndrejKarpathy是一位世界级的人工智能专家,程序员,软件架构师,CTO,同时也是计算机图灵奖获得者,计算机编程和人工智能领域大师。他以其深刻的技术见解,对深度学习和自然语言处理领域的贡献,以及对计算范式的革新性思考,成为了当今技术领域的引领者之一。本文分为六个
- html页面js获取参数值
0624chenhong
html
1.js获取参数值js
function GetQueryString(name)
{
var reg = new RegExp("(^|&)"+ name +"=([^&]*)(&|$)");
var r = windo
- MongoDB 在多线程高并发下的问题
BigCat2013
mongodbDB高并发重复数据
最近项目用到 MongoDB , 主要是一些读取数据及改状态位的操作. 因为是结合了最近流行的 Storm进行大数据的分析处理,并将分析结果插入Vertica数据库,所以在多线程高并发的情境下, 会发现 Vertica 数据库中有部分重复的数据. 这到底是什么原因导致的呢?笔者开始也是一筹莫 展,重复去看 MongoDB 的 API , 终于有了新发现 :
com.mongodb.DB 这个类有
- c++ 用类模版实现链表(c++语言程序设计第四版示例代码)
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T>
class Node
{
private:
Node<T> * next;
public:
T data;
- 最近情况
麦田的设计者
感慨考试生活
在五月黄梅天的岁月里,一年两次的软考又要开始了。到目前为止,我已经考了多达三次的软考,最后的结果就是通过了初级考试(程序员)。人啊,就是不满足,考了初级就希望考中级,于是,这学期我就报考了中级,明天就要考试。感觉机会不大,期待奇迹发生吧。这个学期忙于练车,写项目,反正最后是一团糟。后天还要考试科目二。这个星期真的是很艰难的一周,希望能快点度过。
- linux系统中用pkill踢出在线登录用户
被触发
linux
由于linux服务器允许多用户登录,公司很多人知道密码,工作造成一定的障碍所以需要有时踢出指定的用户
1/#who 查出当前有那些终端登录(用 w 命令更详细)
# who
root pts/0 2010-10-28 09:36 (192
- 仿QQ聊天第二版
肆无忌惮_
qq
在第一版之上的改进内容:
第一版链接:
http://479001499.iteye.com/admin/blogs/2100893
用map存起来号码对应的聊天窗口对象,解决私聊的时候所有消息发到一个窗口的问题.
增加ViewInfo类,这个是信息预览的窗口,如果是自己的信息,则可以进行编辑.
信息修改后上传至服务器再告诉所有用户,自己的窗口
- java读取配置文件
知了ing
1,java读取.properties配置文件
InputStream in;
try {
in = test.class.getClassLoader().getResourceAsStream("config/ipnetOracle.properties");//配置文件的路径
Properties p = new Properties()
- __attribute__ 你知多少?
矮蛋蛋
C++gcc
原文地址:
http://www.cnblogs.com/astwish/p/3460618.html
GNU C 的一大特色就是__attribute__ 机制。__attribute__ 可以设置函数属性(Function Attribute )、变量属性(Variable Attribute )和类型属性(Type Attribute )。
__attribute__ 书写特征是:
- jsoup使用笔记
alleni123
java爬虫JSoup
<dependency>
<groupId>org.jsoup</groupId>
<artifactId>jsoup</artifactId>
<version>1.7.3</version>
</dependency>
2014/08/28
今天遇到这种形式,
- JAVA中的集合 Collectio 和Map的简单使用及方法
百合不是茶
listmapset
List ,set ,map的使用方法和区别
java容器类类库的用途是保存对象,并将其分为两个概念:
Collection集合:一个独立的序列,这些序列都服从一条或多条规则;List必须按顺序保存元素 ,set不能重复元素;Queue按照排队规则来确定对象产生的顺序(通常与他们被插入的
- 杀LINUX的JOB进程
bijian1013
linuxunix
今天发现数据库一个JOB一直在执行,都执行了好几个小时还在执行,所以想办法给删除掉
系统环境:
ORACLE 10G
Linux操作系统
操作步骤如下:
第一步.查询出来那个job在运行,找个对应的SID字段
select * from dba_jobs_running--找到job对应的sid
&n
- Spring AOP详解
bijian1013
javaspringAOP
最近项目中遇到了以下几点需求,仔细思考之后,觉得采用AOP来解决。一方面是为了以更加灵活的方式来解决问题,另一方面是借此机会深入学习Spring AOP相关的内容。例如,以下需求不用AOP肯定也能解决,至于是否牵强附会,仁者见仁智者见智。
1.对部分函数的调用进行日志记录,用于观察特定问题在运行过程中的函数调用
- [Gson六]Gson类型适配器(TypeAdapter)
bit1129
Adapter
TypeAdapter的使用动机
Gson在序列化和反序列化时,默认情况下,是按照POJO类的字段属性名和JSON串键进行一一映射匹配,然后把JSON串的键对应的值转换成POJO相同字段对应的值,反之亦然,在这个过程中有一个JSON串Key对应的Value和对象之间如何转换(序列化/反序列化)的问题。
以Date为例,在序列化和反序列化时,Gson默认使用java.
- 【spark八十七】给定Driver Program, 如何判断哪些代码在Driver运行,哪些代码在Worker上执行
bit1129
driver
Driver Program是用户编写的提交给Spark集群执行的application,它包含两部分
作为驱动: Driver与Master、Worker协作完成application进程的启动、DAG划分、计算任务封装、计算任务分发到各个计算节点(Worker)、计算资源的分配等。
计算逻辑本身,当计算任务在Worker执行时,执行计算逻辑完成application的计算任务
- nginx 经验总结
ronin47
nginx 总结
深感nginx的强大,只学了皮毛,把学下的记录。
获取Header 信息,一般是以$http_XX(XX是小写)
获取body,通过接口,再展开,根据K取V
获取uri,以$arg_XX
&n
- 轩辕互动-1.求三个整数中第二大的数2.整型数组的平衡点
bylijinnan
数组
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class ExoWeb {
public static void main(String[] args) {
ExoWeb ew=new ExoWeb();
System.out.pri
- Netty源码学习-Java-NIO-Reactor
bylijinnan
java多线程netty
Netty里面采用了NIO-based Reactor Pattern
了解这个模式对学习Netty非常有帮助
参考以下两篇文章:
http://jeewanthad.blogspot.com/2013/02/reactor-pattern-explained-part-1.html
http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf
- AOP通俗理解
cngolon
springAOP
1.我所知道的aop 初看aop,上来就是一大堆术语,而且还有个拉风的名字,面向切面编程,都说是OOP的一种有益补充等等。一下子让你不知所措,心想着:怪不得很多人都和 我说aop多难多难。当我看进去以后,我才发现:它就是一些java基础上的朴实无华的应用,包括ioc,包括许许多多这样的名词,都是万变不离其宗而 已。 2.为什么用aop&nb
- cursor variable 实例
ctrain
variable
create or replace procedure proc_test01
as
type emp_row is record(
empno emp.empno%type,
ename emp.ename%type,
job emp.job%type,
mgr emp.mgr%type,
hiberdate emp.hiredate%type,
sal emp.sal%t
- shell报bash: service: command not found解决方法
daizj
linuxshellservicejps
今天在执行一个脚本时,本来是想在脚本中启动hdfs和hive等程序,可以在执行到service hive-server start等启动服务的命令时会报错,最终解决方法记录一下:
脚本报错如下:
./olap_quick_intall.sh: line 57: service: command not found
./olap_quick_intall.sh: line 59
- 40个迹象表明你还是PHP菜鸟
dcj3sjt126com
设计模式PHP正则表达式oop
你是PHP菜鸟,如果你:1. 不会利用如phpDoc 这样的工具来恰当地注释你的代码2. 对优秀的集成开发环境如Zend Studio 或Eclipse PDT 视而不见3. 从未用过任何形式的版本控制系统,如Subclipse4. 不采用某种编码与命名标准 ,以及通用约定,不能在项目开发周期里贯彻落实5. 不使用统一开发方式6. 不转换(或)也不验证某些输入或SQL查询串(译注:参考PHP相关函
- Android逐帧动画的实现
dcj3sjt126com
android
一、代码实现:
private ImageView iv;
private AnimationDrawable ad;
@Override
protected void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout
- java远程调用linux的命令或者脚本
eksliang
linuxganymed-ssh2
转载请出自出处:
http://eksliang.iteye.com/blog/2105862
Java通过SSH2协议执行远程Shell脚本(ganymed-ssh2-build210.jar)
使用步骤如下:
1.导包
官网下载:
http://www.ganymed.ethz.ch/ssh2/
ma
- adb端口被占用问题
gqdy365
adb
最近重新安装的电脑,配置了新环境,老是出现:
adb server is out of date. killing...
ADB server didn't ACK
* failed to start daemon *
百度了一下,说是端口被占用,我开个eclipse,然后打开cmd,就提示这个,很烦人。
一个比较彻底的解决办法就是修改
- ASP.NET使用FileUpload上传文件
hvt
.netC#hovertreeasp.netwebform
前台代码:
<asp:FileUpload ID="fuKeleyi" runat="server" />
<asp:Button ID="BtnUp" runat="server" onclick="BtnUp_Click" Text="上 传" />
- 代码之谜(四)- 浮点数(从惊讶到思考)
justjavac
浮点数精度代码之谜IEEE
在『代码之谜』系列的前几篇文章中,很多次出现了浮点数。 浮点数在很多编程语言中被称为简单数据类型,其实,浮点数比起那些复杂数据类型(比如字符串)来说, 一点都不简单。
单单是说明 IEEE浮点数 就可以写一本书了,我将用几篇博文来简单的说说我所理解的浮点数,算是抛砖引玉吧。 一次面试
记得多年前我招聘 Java 程序员时的一次关于浮点数、二分法、编码的面试, 多年以后,他已经称为了一名很出色的
- 数据结构随记_1
lx.asymmetric
数据结构笔记
第一章
1.数据结构包括数据的
逻辑结构、数据的物理/存储结构和数据的逻辑关系这三个方面的内容。 2.数据的存储结构可用四种基本的存储方法表示,它们分别是
顺序存储、链式存储 、索引存储 和 散列存储。 3.数据运算最常用的有五种,分别是
查找/检索、排序、插入、删除、修改。 4.算法主要有以下五个特性:
输入、输出、可行性、确定性和有穷性。 5.算法分析的
- linux的会话和进程组
网络接口
linux
会话: 一个或多个进程组。起于用户登录,终止于用户退出。此期间所有进程都属于这个会话期。会话首进程:调用setsid创建会话的进程1.规定组长进程不能调用setsid,因为调用setsid后,调用进程会成为新的进程组的组长进程.如何保证? 先调用fork,然后终止父进程,此时由于子进程的进程组ID为父进程的进程组ID,而子进程的ID是重新分配的,所以保证子进程不会是进程组长,从而子进程可以调用se
- 二维数组 元素的连续求解
1140566087
二维数组ACM
import java.util.HashMap;
public class Title {
public static void main(String[] args){
f();
}
// 二位数组的应用
//12、二维数组中,哪一行或哪一列的连续存放的0的个数最多,是几个0。注意,是“连续”。
public static void f(){
- 也谈什么时候Java比C++快
windshome
javaC++
刚打开iteye就看到这个标题“Java什么时候比C++快”,觉得很好笑。
你要比,就比同等水平的基础上的相比,笨蛋写得C代码和C++代码,去和高手写的Java代码比效率,有什么意义呢?
我是写密码算法的,深刻知道算法C和C++实现和Java实现之间的效率差,甚至也比对过C代码和汇编代码的效率差,计算机是个死的东西,再怎么优化,Java也就是和C