这里不讨论怎么获取矫正参数,假定已经获取矫正参数
#include
using namespace cv;
void correct_photo(const char * jpg)
{
Mat src = imread(jpg);
Mat distortion = src.clone();
Mat camera_matrix = Mat(3, 3, CV_32FC1);
Mat distortion_coefficients;
//导入相机内参和畸变系数矩阵
FileStorage file_storage("out_camera_data.xml", FileStorage::READ);
file_storage["Camera_Matrix"] >> camera_matrix;
file_storage["Distortion_Coefficients"] >> distortion_coefficients;
file_storage.release();
undistort(src, distortion, camera_matrix, distortion_coefficients);
}
undistort函数对于单幅
void cvRemap( const CvArr* src, CvArr* dst,const CvArr* mapx, const CvArr* mapy,int flags=CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS,CvScalar fillval=cvScalarAll(0) );
参数说明:
src——输入图像.
dst——输出图像.
mapx——x坐标的映射 (32fC1 image).
mapy——y坐标的映射 (32fC1 image).
flags——插值方法和以下开关选项的组合:
CV_WARP_FILL_OUTLIERS——填充边界外的像素. 如果输出图像的部分象素落在变换后的边界外,那么它们的值设定为 fillval。
fillval——用来填充边界外面的值.
#include
#include
using namespace std;
using namespace cv;
int main()
{
const cv::Mat K = (cv::Mat_<double>(3, 3) << 6.5746697810243404e+002, 0.0, 3.1950000000000000e+002
, 0.0, 6.5746697810243404e+002, 2.3950000000000000e+002, 0.0, 0.0, 1.0);
const cv::Mat D = (cv::Mat_<double>(5, 1) << -4.1802327018241026e-001, 5.0715243805833121e-001, 0.0, 0.0,
-5.7843596847939704e-001);
//const string str = "/home/jiang/4_learn/WeChatCode/ImageUndistort/data/";
//const int nImage = 5;
const int ImgWidth = 640;
const int ImgHeight = 480;
cv::Mat map1, map2;
cv::Size imageSize(ImgWidth, ImgHeight);
const double alpha = 1;
cv::Mat NewCameraMatrix = getOptimalNewCameraMatrix(K, D,
imageSize, alpha, imageSize, 0);
initUndistortRectifyMap(K, D, cv::Mat(), NewCameraMatrix,
imageSize, CV_16SC2, map1, map2);
VideoCapture capture("l:/109_sub.mkv");
Mat frame;
while (capture.isOpened())
{
capture >> frame;
//string InputPath = str + to_string(i) + ".png";
//cv::Mat RawImage = cv::imread(InputPath);
//cv::imshow("RawImage", RawImage);
cv::Mat UndistortImage;
remap(frame, UndistortImage, map1, map2, cv::INTER_LINEAR);
cv::imshow("origin", frame);
cv::imshow("UndistortImage", UndistortImage);
//string OutputPath = str + to_string(i) + "_un" + ".png";
//cv::imwrite(OutputPath, UndistortImage);
cv::waitKey(2);
}
return 0;
}
不过矫正函数是非常耗cpu的,图像大了以后尤其明显。