用PyTorch简单实现线性回归

参考视频:05.用PyTorch实现线性回归_哔哩哔哩_bilibili

还是以 y = 3 x + 2 y=3x+2 y=3x+2为例(事先不知道)

学习率设为0.01,训练1000次

要注意视频中定义损失函数的部分所用的参数size_average=False已经过时,需要改成reduction=‘sum’

完整代码:

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import numpy as np

x_data = torch.Tensor([[1.0], [2.0], [3.0]])
y_data = torch.Tensor([[5.0], [8.0], [11.0]])


class LinearModel(nn.Module):
    def __init__(self):
        super(LinearModel, self).__init__()
        self.linear = nn.Linear(1, 1)  # 定义输入输出的维度1

    def forward(self, x):   # override前馈函数
        y_pred = self.linear(x) # wx+b
        return y_pred


model = LinearModel()  # 实例化模型
# criterion = nn.MSELoss(size_average=False)
criterion = torch.nn.MSELoss(reduction='sum')  # 定义损失函数
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)  # 设置优化器SGD,学习率0.01
loss_list = []

# 开始训练
for epoch in range(1000):
    y_pred = model(x_data)  # 算出前馈forward
    loss = criterion(y_pred, y_data)    # 算出损失
    print(epoch, " loss: ", loss.item())
    loss_list.append(loss.item())

    optimizer.zero_grad()  # 将梯度清零,防止累加
    loss.backward()  # 计算梯度
    optimizer.step()  # 使用梯度更新参数

print('w=', model.linear.weight.item())
print('b=', model.linear.bias.item())

# 绘制Epoch-Loss曲线
plt.figure()
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.plot(np.arange(0, 1000, 1), np.array(loss_list))
plt.show()

经过1000次训练后运行结果如下:

非常逼近w=3,b=2

用PyTorch简单实现线性回归_第1张图片

用PyTorch简单实现线性回归_第2张图片

你可能感兴趣的:(机器学习,pytorch,线性回归,python)