Win10安装cuda、cudnn检测是否安装成功

1. 进入终端

激活创建的虚拟环境:

conda activate PyTorch

Win10安装cuda、cudnn检测是否安装成功_第1张图片
通过nvcc -V和nvidia-smi分别查看cuda版本:

Win10安装cuda、cudnn检测是否安装成功_第2张图片
Win10安装cuda、cudnn检测是否安装成功_第3张图片
这里我系统最高可支持的是11.6的cuda。

2. 检测cuda的可行性

Win10安装cuda、cudnn检测是否安装成功_第4张图片

3. 检测cudnn可用性

Win10安装cuda、cudnn检测是否安装成功_第5张图片

由此可见,可行!

4. 检测方法汇总

>>> import torch
>>> torch.cuda.is_available()  # cuda是否可用
True
>>> print(torch.version.cuda)  # 查看pytorch 对应的cuda版本
11.3
>>> print(torch.__version__) # 查看pytorch版本
1.11.0
>>> torch.cuda.device_count()  # 返回gpu数量
1
>>> torch.cuda.get_device_name(0) # 返回gpu名字,设备索引默认从0开始;
'NVIDIA GeForce 940MX'
>>> torch.cuda.current_device()  # 返回当前设备索引
0
>>> import torch
>>> print(torch.backends.cudnn.version())
8200
>>> a = torch.tensor(1.)
>>> a.cuda()
tensor(1., device='cuda:0')
>>> from torch.backends import cudnn # 若正常则静默
>>> cudnn.is_available() # 若正常返回True
True
>>> cudnn.is_acceptable(a.cuda()) # 若正常返回True
True
>>>

你可能感兴趣的:(软件安装教程,pytorch,深度学习,python)